![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
tìm tử thức là 2 ko đổi để bt A có GTNN khi mẫu thức \(6x-5-9x^2\)có GTLN mà\(6x-5-9x^2=-(9x^2-6x-5)=-3(3x^2-2x+\frac{5}{3})\)\(=-3[(3x^2-2x\frac{1}{2}+\frac{1}{4})-\frac{1}{4}+\frac{5}{3}]\) \(=-3[(3x-\frac{1}{2})^2+\frac{17}{12}=-\frac{17}{4}-3(3x-\frac{1}{2})^2\)vì \((3x-\frac{1}{2})^2\ge0\forall x\Rightarrow6x-5-9x^2=-\frac{17}{4}-3(3x-\frac{1}{2})^2\le-\frac{17}{4}\)vậy GTLN \((6x-5-9x^2)\)bằng \(-\frac{17}{4}\)đạt được khi \((3x-\frac{1}{2})^2=0\Rightarrow x=\frac{1}{6}\Rightarrow\)\(A\ge\frac{2}{\frac{-17}{4}}=2\times\frac{-17}{4}=-\frac{17}{2}\) vậy MIN \((A)=-\frac{17}{2}\)đạt được \(\Leftrightarrow x=\frac{1}{6}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: A = 2x2 - 4x + 3 = 2(x2 - 2x + 1) + 1 = 2(x - 1)2 + 1
Do 2(x - 1)2 \(\ge\)0 \(\forall\)x => 2(x - 1)2 + 1 \(\ge\)1
Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1
Vậy MinA = 1 <=> x = 1
Ta có: B = \(\frac{-7}{x^2+6x+2012}=\frac{-7}{\left(x^2+6x+9\right)+2003}=-\frac{7}{\left(x+3\right)^2+2003}\)
Do (x + 3)2 \(\ge\)0 \(\forall\)x => (x + 3)2 + 2003 \(\ge\)2003 \(\forall\)x
=> \(\frac{7}{\left(x+3\right)^2+2003}\le\frac{7}{2003}\forall x\) => \(-\frac{7}{\left(x+3\right)^2+2003}\ge-\frac{7}{2003}\forall x\)
Dấu "=" xảy ra <=> x+ 3 = 0 <=> x = -3
Vậy MinB = -7/2003 <=> x = -3
![](https://rs.olm.vn/images/avt/0.png?1311)
+) \(B=2x^2-4x+1\)
\(\Leftrightarrow B=2\left(x^2-2x+\frac{1}{2}\right)\)
\(\Leftrightarrow B=2\left(x^2-2x+1-\frac{1}{2}\right)\)
\(\Leftrightarrow B=2\left(x-1\right)^2-1\ge-1\)
Min B = -1 \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
B = 2x2 - 4x + 1
= 2( x2 - 2x + 1 ) - 1
= 2( x - 1 )2 - 1 ≥ -1 ∀ x
Dấu "=" xảy ra khi x = 1
=> MinB = -1 <=> x = 1
D = -3x2 - 6x + 9 ( vầy chứ nhỉ ? )
= -3( x2 + 2x + 1 ) + 12
= -3( x + 1 )2 + 12 ≤ 12 ∀ x
Dấu "=" xảy ra khi x = -1
=> MaxD = 12 <=> x = -1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\dfrac{3x^2-6x+17}{x^2-2x+5}\)
= \(\dfrac{3x^2-6x+15+2}{x^2-2x+5}\)
=\(\dfrac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}\)
= \(\dfrac{3\cdot\left(x^2-2x+5\right)}{x^2-2x+5}+\dfrac{2}{x^2-2x+5}\)
= \(3+\dfrac{2}{x^2-2x+5}\)
= \(3+\dfrac{2}{x^2-2x+1+4}\)
= \(3+\dfrac{2}{\left(x-1\right)^2+4}\)
vì (x-1)2 ≥ 0 ∀ x
⇔ (x-1)2 +4 ≥ 4
⇔\(\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{1}{2}\)
⇔\(3+\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{7}{2}\)
⇔ A \(\le\dfrac{7}{2}\)
⇔ Min A =\(\dfrac{7}{2}\)
khi x-1=0
⇔ x=1
vậy ....
Ta có:\(B=\dfrac{2x^2-16x+41}{x^2-8x+22}\)
\(B=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)
\(B=2-\dfrac{3}{x^2-8x+16+6}\)
\(B=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{5}{2}\)
\(\Rightarrow MINB=\dfrac{5}{2}\Leftrightarrow x=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\).Vậy MIN A là 2 với x=2
\(B=2\left(x^2+3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x+\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{6x^2-2x+1}{x^2}=6-\frac{2}{x}+\frac{1}{x^2}\)
Đặt \(\frac{1}{x}=a\)ta có
\(A=6-2a+a^2=a^2-2a+1+5=\left(a-1\right)^2+5\)
Vì\(\left(a+1\right)^2\ge0\forall a\)
\(\Rightarrow A\ge5\forall a\)
GTNN của A=5 <=>a+1=0 <=>a=-1 =>x=-1