Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ta có
\(\sqrt{x-2}\ge0\)với mọi x
=>A=1+\(\sqrt{x-2}\ge1\)
dấu "=" xảy ra khi:
x-2=0
<=>x=2
Vậy GTNN của A là 1 tại x=2
2)
ta có :
\(-\sqrt{2x-1}\le0\)
=>B=5-\(\sqrt{2x-1}\le5\)
Dấu "=" xảy ra khi:
2x-1=0
<=>2x=1
<=>x=1/2
Vậy GTLN của B là 5 tại x=1/2
\(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(=\sqrt{\left(x-1\right)^2}+\left|x-4\right|+\left|x-6\right|\)
\(=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)
\(=\left|x-4\right|+\left(\left|x-1\right|+\left|x-6\right|\right)\)
\(=\left|x-4\right|+\left(\left|x-1\right|+\left|6-x\right|\right)\)
Ta có \(\hept{\begin{cases}\left|x-4\right|\ge0\forall x\\\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\end{cases}}\)
=> \(\left|x-4\right|+\left(\left|x-1\right|+\left|6-x\right|\right)\ge5\forall x\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-4=0\\\left(x-1\right)\left(6-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\1\le x\le6\end{cases}}\Leftrightarrow x=4\)
=> MinA = 5 <=> x = 4
Ta có: \(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(\Rightarrow A=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)
\(=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)
\(=\left|x-4\right|+\left|x-1\right|+\left|x-6\right|\)
Xét \(\left|x-1\right|+\left|x-6\right|\)ta có:
\(\left|x-1\right|+\left|x-6\right|=\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\)(1)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)\left(6-x\right)\ge0\)
TH1: Nếu \(\hept{\begin{cases}x-1< 0\\6-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\6< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x>6\end{cases}}\)( vô lý )
TH2: Nếu \(\hept{\begin{cases}x-1\ge0\\6-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\6\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le6\end{cases}}\Leftrightarrow1\le x\le6\)
mà \(\left|x-4\right|\ge0\)(2)
Từ (1) và (2) \(\Rightarrow A\ge5\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-4=0\\1\le x\le6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\1\le x\le6\end{cases}}\Leftrightarrow x=4\)
Vậy \(minA=5\)\(\Leftrightarrow x=4\)
\(C=x-2\sqrt{xy}+3y-2\sqrt{x}+1\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2+2y-2\left(\sqrt{x}-\sqrt{y}\right)-2\sqrt{y}+1\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2-2\left(\sqrt{x}-\sqrt{y}\right)+1+2\left(y-\sqrt{y}+\frac{1}{4}\right)-\frac{1}{2}\)
\(=\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(\sqrt{y}-\frac{1}{2}\right)^2-\frac{1}{2}\ge\frac{-1}{2}\)
Đến đây dễ rồi
ĐKXĐ: x>=0
a: P=1/2
=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}+5}=\dfrac{1}{2}\)
=>\(2\sqrt{x}+4=\sqrt{x}+5\)
=>\(\sqrt{x}=1\)
=>x=1(nhận)
b: \(P^2-P=P\left(P-1\right)\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+5}\cdot\dfrac{\sqrt{x}+2-\sqrt{x}-5}{\sqrt{x}+5}\)
\(=\dfrac{-3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+5\right)^2}< 0\)
=>\(P^2< P\)
c: Để P nguyên thì \(\sqrt{x}+2⋮\sqrt{x}+5\)
=>\(\sqrt{x}+5-3⋮\sqrt{x}+5\)
=>\(\sqrt{x}+5\inƯ\left(-3\right)\)
=>\(\sqrt{x}+5\in\left\{1;-1;3;-3\right\}\)
=>\(\sqrt{x}\in\left\{-4;-6;-2;-8\right\}\)
=>\(x\in\varnothing\)
Lời giải:
ĐK:$x\geq 0$
Ta thấy:
\(5x-2\sqrt{x}+1=5(x-\frac{2}{5}\sqrt{x}+\frac{1}{5^2})+\frac{4}{5}\)
\(=5(\sqrt{x}-\frac{1}{5})^2+\frac{4}{5}\)
Vì \((\sqrt{x}-\frac{1}{5})^2\geq 0, \forall x\geq 0\Rightarrow 5x-2\sqrt{x}+1=5(\sqrt{x}-\frac{1}{5})^2+\frac{4}{5}\geq \frac{4}{5}\)
Vậy GTNN của biểu thức là $\frac{4}{5}$
Dấu "=" xảy ra khi \((\sqrt{x}-\frac{1}{5})^2=0\Leftrightarrow x=\frac{1}{25}\)