K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2019

Đề sai tìm GTLN là đúng

Dat \(P=\left(1-x\right)\left(x+4\right)\left(x^2+3x+4\right)\)

\(=\left(x+4-x^2-4x\right)\left(x^2+3x+4\right)\)

\(=\left(4-x^2-3x\right)\left(4+x^2+3x\right)\)

\(=16-\left(x^2+3x\right)^2\le16\)

Dau '=' xay ra khi \(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)

Vay \(P_{max}=16\)khi \(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

27 tháng 12 2018

\(A=\frac{x^2-3x+4}{\left(x-1\right)^2}=\frac{x^2+x-4x+4}{\left(x-1\right)^2}=\frac{x\left(x+1\right)+4\left(x+1\right)}{\left(x+1\right)^2}=\frac{\left(x+1\right)\left(x+4\right)}{\left(x+1\right)^2}=\frac{x+4}{x+1}\)

27 tháng 12 2018

ĐKXĐ: x khác 1

\(A=\frac{x^2-3x+4}{x^2-2x+1}=\frac{x^2-2x+1-x+1+2}{x^2-2x+1}=1+\frac{-\left(x-1\right)}{\left(x-1\right)^2}+\frac{2}{\left(x-1\right)^2}\)

\(=1+\frac{-1}{x-1}+\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(x-1\right)^2}\)

đặt \(m=\frac{1}{x-1}\Rightarrow A=1+-m+2m^2=2.\left(m^2-\frac{m.1}{2}+\frac{1}{16}\right)+\frac{7}{8}\)

\(A=2.\left(m-\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)

dấu = xảy ra khi \(m-\frac{1}{4}=0\)

\(\Rightarrow m=\frac{1}{4}=\frac{1}{x-1}\Rightarrow x=5\)

p/s: ko chắc lắm, 60% thôi >:

17 tháng 7 2021

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$