Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e, Đặt \(\dfrac{x}{4}=\dfrac{y}{5}=k\left(k\in Z\right)\)
\(\Leftrightarrow x=4k,y=5k\) (1)
Theo bài ra ta có: xy = 80
Từ (1) \(\Rightarrow4k.5k=80\Rightarrow20.k^2=80\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k^2=2^2\\k^2=\left(-2\right)^2\end{matrix}\right.\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)
+ Với k = 2 \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)
+ Với k = -2 \(\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-10\end{matrix}\right.\)
Vậy \(\left(x,y\right)\in\left\{\left(8,10\right);\left(-8,-10\right)\right\}\)
a) \(\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x}{15}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5-6}=\dfrac{-16}{4}=-4\Rightarrow\left[{}\begin{matrix}\dfrac{x}{3}=-4\\\dfrac{y}{5}=-4\\\dfrac{z}{-2}=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-12\\y=-20\\z=8\end{matrix}\right.\)
\(\left(x+5\right)\left(x-2\right)\left(x+4\right)\left(x+3\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+5=0\\x-2=0\\x+4=0\\x+3=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-5\\x=2\\x=-4\\x=3\end{array}\right.\)
Bài 7:
x/1=z/2 nên x/6=z/12
=>x/6=y/9=z/12
=>x/2=y/3=z/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\)
=>x=6; y=9; z=12
a) Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{8}=\frac{z}{7}=\frac{t}{6}=\frac{x-t}{9-6}=\frac{30}{3}=10\)
x/9=10 => x=90
y/8=10 => y=80
z/7=10 => z=70
t/6=10 => t=60
b) 3y=5z \(\Rightarrow\frac{y}{5}=\frac{z}{3}\)
x/4=y/3 ; y/5=z/3 \(\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x-y-z}{20-15-9}=\frac{100}{-4}=-25\)
x/20=-25 => x=-500
y/15=-25 => y=-375
z/9=-25 => z=-225
a)
+ Áp dụng tính chất dãy tỉ số bằng nhau, ta có
\(\frac{x}{9}=\frac{t}{6}\)⇒ \(\frac{x-t}{9-6}=\frac{30}{3}=10\)
+ Ta có:
\(\frac{x}{9}=10\)⇒x=10.9=90
\(\frac{y}{8}=10\)⇒y=10.8=80
\(\frac{z}{7}=10\)⇒z=10.7=70
\(\frac{t}{6}=10\)⇒t=10.6=60
Vậy x=90; y=80; z=70 và t=60.
Bài 2b
Thay x = -1; y = 1 vào N ta đc:
\(N=\left(-1\right).1+\left(-1\right)^2.1^2+\left(-1\right)^3.1^3+\left(-1\right)^4.1^4+\left(-1\right)^5.1^5\)
\(=\left(-1\right)+1+\left(-1\right)+1+\left(-1\right)\)
\(=-1\)
Mình làm cách 1 theo cách này bạn xem được không nhé :
Đặt \(A=-\dfrac{5}{70}-\dfrac{5}{700}-\dfrac{5}{7000}-\dfrac{5}{70000}-\dfrac{5}{700000}\)
\(\Rightarrow10A=-\dfrac{5}{7}-\dfrac{5}{70}-\dfrac{5}{700}-\dfrac{5}{7000}-\dfrac{5}{70000}\)
\(\Rightarrow10A-A=9A=-\dfrac{5}{7}+\dfrac{5}{700000}\)
\(9A=\dfrac{-500000}{700000}+\dfrac{5}{700000}=\dfrac{-450000}{700000}=\dfrac{-9}{14}\)
\(\Rightarrow A=\dfrac{-9}{14}:9=\dfrac{-1}{14}\)
Mình không biết làm bài 1 thông cảm nha
\(2,\)
\(x^5:x^3=\sqrt{4}\)
\(\Rightarrow x^5:x^3=2\)
\(\Rightarrow x^2=2\)
\(\Rightarrow x^2=\sqrt{2^2}=\sqrt{\left(-2\right)^2}\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
\(3,\)
\(a,\) \(8^7-2^{18}\)
\(=\left(2^3\right)^7-2^{18}\)
\(=2^{21}-2^{18}\)
\(=2^{18}.\left(2^3-1\right)\)
\(=2^{18}.\left(8-1\right)=2^{18}.7\)
Vì \(7⋮7\)
\(\Rightarrow2^{18}.7⋮7\)
Vậy \(8^7-2^{18}\) chia hết cho 7
\(b,\)
\(10^6+5^7\)
\(=\left(5.2\right)^6+5^7\)
\(=5^6.2^6+5^7\)
\(=5^6.\left(2^6+5\right)\)
\(=5^6.\left(64+5\right)=5^6.69\)
Vì \(69⋮69\)
\(\Rightarrow5^6.69⋮69\)
\(\Rightarrow10^6+5^7\) chia hết cho 69
\(c,14^6-49^3\)
\(=\left(7.2\right)^6-\left(7^2\right)^3\)
\(=7^6.2^6-7^6\)
\(=7^6.\left(2^6-1\right)\)
\(=7^6.\left(64-1\right)=7^6.63\)
Vì \(63⋮63\)
\(\Rightarrow7^6.63⋮63\)
Vậy \(14^6-49^3⋮63\)
\(d,14^9-49^2\)
\(=\left(7.2\right)^9-\left(7^2\right)^2\)
\(=7^9.2^9-7^4\)
\(=7^4.\left(7^5-2^9\right)\)
Xét : \(7^5-2^9\)
\(=\left(7^2\right)\left(7^2\right).7-\left(2^4\right)\left(2^4\right).2\)
\(=\overline{...9}.\overline{...9}.\overline{...7}-\overline{...6}.\overline{...6}.\overline{...2}\)
\(=\overline{...7}-\overline{...2}=\overline{...5}\)
\(\overline{...5}⋮5\)
Vì \(7\) không chia hết cho 3
\(\Rightarrow7^5\) không chia hết cho 3
mà \(7^5\) không phải là số chính phương
⇒ \(7^5\) chia 3 dư 1 \(\left(1\right)\)
Tương tự \(\Rightarrow2^9\) chia 3 dư 1 \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)\(\Rightarrow7^5-2^9⋮3\)
Vì 5;3 là hai số nguyên tố cùng nhau
\(\Rightarrow7^5-2^9⋮\left(5.3\right)=15\)
Ta có : \(\hept{\begin{cases}\left|4x-3\right|\ge0\forall x\\\left|5y+7,5\right|\ge0\forall y\end{cases}}\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)
=> \(F=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
=> Min F = 17,5
Dấu "=" xảy ra <=> \(\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,75\\y=-1,5\end{cases}}\)
Vậy Min F = 17,5 <=> x = 0,75 ; y = - 1,5