K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

\(A=x^2+4xy+4y^2+2x+4y+1+y^2-4y+4+7\) 

=\(\left(x+2y\right)^2+2\left(x+2y\right)+1+\left(y-2\right)^2+7\)

=\(\left(x+2y+1\right)^2+\left(y-2\right)^2+7\ge7\)

vậy \(MinA=7\)Tại \(\hept{\begin{cases}x+2y+1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=2\end{cases}}\)

10 tháng 9 2017

đề có đúng kkovaayj

15 tháng 9 2015

A = [(x- 4xy + 4y2) + 10.(x - 2y) + 25] + (y2 - 2y + 1) + 9 = (x- 2y + 5)2 + (y - 1) + 9 \(\ge\) 0 + 0 + 9 = 9 

=> A nhỏ nhất bằng 9 tại y - 1= 0 và x - 2y + 5 = 0 

=> y = 1 và x = -3

15 tháng 9 2015

a, phân tích đa thức thành tổng của bình phương. Vì các bình phương luôn lớn hơn hoặc bằng 0 nên GTNN = phần dư. 
ở bài này GTNN=10 
b,tương tự câu trên luôn, nhưng có vẻ bài này khó hơn nhiều đấy. 
Mẹo nè: bạn đưa các phần tử có x về trước hết rùi đưa về bình phương của 3 số, thêm bớt đc phần còn lại nhét vào 1 bình phương nữa=>còn dư đấy chính là GTNN đó. 
Bài này chắc là hơi khó đối với bạn nên minh làm sơ sơ cho bạn nghen 
x^2-4xy+5y^2+10x-22y+28 
x² - 4xy +10x +4y² + 25-20y +y²-2y +3 
(x-2y+5)²+(y-1)²+2≥2 

VẬy GTNN =2 <=>x=-3;y=1

30 tháng 4 2016

x^2-4xy+4y^2+y^2+2y+1-4=0

=>(x-2y)^2+(y+1)^2-4=0

=>y=1;x=2

10 tháng 9 2017

\(a,A=3x^2-5x+1\)

\(=3\left(x^2-\dfrac{5}{3}x+\dfrac{25}{36}\right)-\dfrac{13}{12}\)

\(=3\left(x-\dfrac{5}{6}\right)^2-\dfrac{13}{12}\)

Với mọi giá trị của x ta có:

\(\left(x-\dfrac{5}{6}\right)^2\ge0\)

\(\Rightarrow3\left(x-\dfrac{5}{6}\right)^2-\dfrac{13}{12}\ge-\dfrac{13}{12}\)

Vậy Min \(A=-\dfrac{13}{12}\)

Để \(A=-\dfrac{13}{12}\) thì \(x-\dfrac{5}{6}=0\Rightarrow x=\dfrac{5}{6}\)

\(b,B=2x^2+5y^2-4x+2y+4xy+2017\)

\(=\left(2x^2-4x+4xy\right)+5y^2+2y+2017\)

\(=2\left(x^2-2x+2xy\right)+5y^2+2y+2017\)

\(=2\left[x^2-2x\left(1-y\right)+\left(1-y\right)^2\right]+5y^2+2y+2017+2\left(1-y\right)^2\)\(=2\left(x-1+y\right)^2+5y^2+2y+2017-2\left(1-y\right)^2\)

\(=2\left(x+y-1\right)^2+5y^2+2y+2017-2+4y-2y^2\)\(=2\left(x+y-1\right)^2+3y^2+6y+2015\)

\(=2\left(x+y-1\right)^2+3\left(y^2+2y+1\right)+2012\)

\(=2\left(x+y-1\right)^2+3\left(y+1\right)^2+2012\)

Với mọi giá trị của x ta có:

\(2\left(x+y-1\right)^2\ge0;3\left(y+1\right)^2\ge0\)

\(\Rightarrow2\left(x+y-1\right)^2+3\left(y+1\right)^2+2012\ge2012\) Vậy : Min B = 2012

Để B = 2012 thì \(\left\{{}\begin{matrix}x+y-1=0\\y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

2 tháng 7 2019

\(D=x^2+2x\left(y+2\right)+2y^2+6y+10\)

\(=x^2+2x\left(y+2\right)+\left(y^2+4y+4\right)+\left(y^2+2y+1\right)+5\)

\(=x^2+2x\left(y+2\right)+\left(y+2\right)^2+\left(y+1\right)^2+5\)

\(=\left(x+y+2\right)^2+\left(y+1\right)^2+5\ge5\forall x\)

\(\Rightarrow\)Min D = 5 tại \(\hept{\begin{cases}x+y+2=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}}\)

=.= hk tốt!!

2 tháng 7 2019

\(E=x^2+4xy+5y^2=x^2+4xy+4y^2+y^2=\left(x+2y\right)^2+y^2\ge0\forall x,y\)

=> Min E = 0 tại \(\hept{\begin{cases}x+2y=0\\y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)

23 tháng 9 2018

Tacó:

\(S=5x^2+2y^2+4xy-2x+4y+2019\)

\(=\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2014\)

\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+2014\)

\(\ge2014\)

Dau "=' xảy ra khi x= 1 ; y=-2