\(A=x^2-6x+25\)

b,B=\(5x^2-4x+3\)<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2018

a) \(A=x^2-6x+25\)

\(=\left(x^2-6x\right)+25\)

\(=\left(x^2-6x+3^2\right)+16\)

\(=\left(x-3\right)^2+16\)

Ta có \(\left(x-3\right)^2\ge0\\ \Rightarrow\left(x-3\right)^2+16\ge16\)

Dấu ''='' xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy GTNT của A là 16 khi x = 3

16 tháng 8 2018

a) \(A=x^2-6x+25\)

\(A=x^2-2.x.3+9-9+25\)

\(A=\left(x-3\right)^2+16\)

\(\left(x-3\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

\(\Rightarrow Amin=16\Leftrightarrow x-3=0\Rightarrow x=3\)

Vậy Amin = 16 <=> x = 3

b) \(B=5x^2-4x+3\)

\(B=5\left(x^2-\dfrac{4}{5}x+\dfrac{3}{5}\right)\)

\(B=5\left(x^2-2.x.\dfrac{2}{5}+\dfrac{4}{25}-\dfrac{4}{25}+\dfrac{3}{5}\right)\)

\(B=5\left(x^2-2.x.\dfrac{2}{5}+\dfrac{4}{25}+\dfrac{11}{25}\right)\)

\(B=5\left(x-\dfrac{2}{5}\right)^2+\dfrac{11}{5}\)

\(5\left(x-\dfrac{2}{5}\right)^2\ge0\) với mọi x

\(\Rightarrow5\left(x-\dfrac{2}{5}\right)^2+\dfrac{11}{5}\ge\dfrac{11}{5}\)

\(\Rightarrow Bmin=\dfrac{11}{5}\Leftrightarrow x-\dfrac{2}{5}=0\Rightarrow x=\dfrac{2}{5}\)

Vậy Bmin = 11/5 <=> x = 2/5

c) \(C=x^2-4xy+5y^2-4y+13\)

\(C=x^2-2.x.2y+\left(2y\right)^2+y^2-2.y.2+4+9\)

\(C=\left(x-2y\right)^2+\left(y-2\right)^2+9\)

\(\left(x-2y\right)^2+\left(y-2\right)^2\ge0\) với mọi x và y

\(\Rightarrow\left(x-2y\right)^2+\left(y-2\right)^2+9\ge9\)

\(\Rightarrow Cmin=9\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)

Vậy Cmin = 9 <=> x = 4 và y = 2

22 tháng 7 2018

\(B=5-8x+x^2=x^2-8x+16-11=\left(x-4\right)^2-11\)

Vậy giá trị nhỏ nhất của B là -11 khi x = 4

22 tháng 7 2018

\(C=x^2+y^2-6x+5y+1=\left(x^2-6x+9\right)+\left(y^2+5y+\frac{25}{4}\right)-\frac{57}{4} \)

                                                           \(=\left(x-3\right)^2+\left(y+\frac{5}{2}\right)^2-\frac{57}{4}\)

Vậy GTNN của C là \(-\frac{57}{4}\)khi x = 3; y = \(-\frac{5}{2}\)

14 tháng 7 2018

Câu a)

\(x^2-xy=6x-5y-8\Leftrightarrow x^2-xy-6x+5y+8=0\Leftrightarrow\left(x-5\right)\left(x-y-1\right)=-3\)

Đến đây bạn tự giải tiếp và tìm nghiệm nha!

Câu c)

\(7x^2=2013-12y^2\Rightarrow7x^2< 2013\Leftrightarrow x\le16\)

Đến đây ta nhận xét rằng vế trái lẻ và chia  hết cho 3. Vậy bạn chỉ cần thử 3 giá trị của x là 3, 9, 15
Hiện tại mình đang bận nên chưa tiện giải hết.
Khi nào mình giải tiếp nha!

13 tháng 6 2017

a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)

\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)

\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)

\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)

Dấu "=" xảy ra khi x=-1 và y=0

13 tháng 6 2017

b)\(5x^2+y^2+2xy-4x=\left(x^2+2xy+y^2\right)+\left(4x^2-4x+1\right)-1\)

\(=\left(x+y\right)^2+\left(2x-1\right)^2-1\ge-1\)

Dấu "=" xảy ra khi x=1/2 và y=-1/2

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Bài 1:

a)

\(A=x^2+y^2-xy-3y+2016=(x^2-xy+\frac{y^2}{4})+(\frac{3y^2}{4}-3y+3)+2013\)

\(=(x-\frac{y}{2})^2+3(\frac{y}{2}-1)^2+2013\)

\(\geq 2013\)

Vậy GTNN của $A$ là $2013$. Giá trị này đạt được khi \(\left\{\begin{matrix} x-\frac{y}{2}=0\\ \frac{y}{2}-1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=2\\ x=1\end{matrix}\right.\)

b)

\(B=2x^2+5y^2+4xy-6+5x-9\)

\(=5(y^2+\frac{4}{5}xy+\frac{4}{25}x^2)+\frac{6}{5}x^2+5x-15\)

\(=5(y+\frac{2}{5}x)^2+\frac{6}{5}(x^2+\frac{25}{6}x+\frac{25^2}{12^2})-\frac{485}{24}\)

\(=5(y+\frac{2}{5}x)^2+\frac{6}{5}(x+\frac{25}{12})^2-\frac{485}{24}\geq \frac{-485}{24}\)

Vậy GTNN của $B$ là $\frac{-485}{24}$

Giá trị này đạt được khi \(\left\{\begin{matrix} y+\frac{2}{5}x=0\\ x+\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-\frac{25}{12}\\ y=\frac{5}{6}\end{matrix}\right.\)

c)

\(C=x^2+xy+y^2-3x-3y+2018\)

\(=\frac{4x^2+4xy+4y^2-12x-12y+8072}{4}=\frac{(4x^2+4xy+y^2)+3y^2-12x-12y+8072}{4}\)

\(=\frac{(2x+y)^2-6(2x+y)+3y^2-6y+8072}{4}\)

\(=\frac{(2x+y)^2-6(2x+y)+9+3(y^2-2y+1)+8060}{4}=\frac{(2x+y-3)^2+3(y-1)^2+8060}{4}\)

\(\geq \frac{8060}{4}=2015\)

Vậy $C_{\min}=2015$. Giá trị đạt được khi \(\left\{\begin{matrix} 2x+y-3=0\\ y-1=0\end{matrix}\right.\Leftrightarrow x=y=1\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Bài 2:

a)
\(-A=x^2+4y^2-2x+4y-5=(x^2-2x+1)+(4y^2+4y+1)-7\)

\(=(x-1)^2+(2y+1)^2-7\geq -7\)

\(\Rightarrow A\leq 7\)

Vậy GTLN của $A$ là $7$.

Giá trị này đạt được khi \(\left\{\begin{matrix} x-1=0\\ 2y+1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=\frac{-1}{2}\end{matrix}\right.\)

b)

ĐKĐB \(\Leftrightarrow B+2x^2+10y^2-6xy-4x+3y-2=0\)

\(\Leftrightarrow 2x^2-2x(3y+2)+(10y^2+3y-2+B)=0\)

Coi đây là PT bậc 2 ẩn $x$. Vì dấu "=" tồn tại nên PT luôn có nghiệm

\(\Rightarrow \Delta'=(3y+2)^2-2(10y^2+3y-2+B)\geq 0\)

\(\Leftrightarrow B\leq \frac{-11y^2+6y+8}{2}=\frac{\frac{97}{11}-11(y-\frac{3}{11})^2}{2}\leq \frac{97}{22}\)

Vậy $B_{\max}=\frac{97}{22}$

27 tháng 10 2021

helpppppp

4 tháng 9 2016

1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4

GTNN = 5

2) tuong tu 

2 tháng 8 2018

b)\(4x^2+4x+5+y^2-4y\)

\(=\left[\left(2x\right)^2+4x+1\right]+\left(y^2-4y+4\right)\)

\(=\left(2x+1\right)^2+\left(y-2\right)^2\)

2 tháng 8 2018

c) \(4x^2+5y^2+4xy-12y+9\)

\(=\left(4x^2+4xy+y^2\right)+\left(4y^2-12y+9\right)\)

\(=\left(2x+y\right)^2+\left(2y-3\right)^2\)