K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 10 2020

\(A=\left(4x^2+25y^2+9-20xy-12x+30y\right)+\left(9x^2+6x+1\right)-2\)

\(A=\left(2x-5y-3\right)^2+\left(3x+1\right)^2-2\ge-2\)

\(A_{min}=-2\) khi \(\left\{{}\begin{matrix}x=-\frac{1}{3}\\y=-\frac{11}{15}\end{matrix}\right.\)

\(B=\left(x^2-3x+\frac{9}{4}\right)+\left(y^2-4y+4\right)-\frac{8105}{4}\)

\(B=\left(x-\frac{3}{2}\right)^2+\left(y-2\right)^2-\frac{8105}{4}\ge-\frac{8105}{4}\)

\(B_{min}=-\frac{8105}{4}\) khi \(\left\{{}\begin{matrix}x=\frac{3}{2}\\y=2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2020

a)

$x^2-2x+5y^2-4y+2020=(x^2-2x+1)+5(y^2-\frac{4}{5}y+\frac{2^2}{5^2})+\frac{10091}{5}$

$=(x-1)^2+5(y-\frac{2}{5})^2+\frac{10091}{5}$

$\geq \frac{10091}{5}$

Vậy GTNN của biểu thức là $\frac{10091}{5}$. Giá trị này đạt được tại $(x-1)^2=(y-\frac{2}{5})^2=0$

$\Leftrightarrow x=1; y=\frac{2}{5}$

b)

\(B=(x-5)^2-(3x-7)^2=(x-5-3x+7)(x-5+3x-7)\)

\(=(2-2x)(4x-12)=8(1-x)(x-3)=8(x-3-x^2+3x)\)

\(=8(4x-3-x^2)=8[1-(x^2-4x+4)]=8[1-(x-2)^2]\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $1-(x-2)^2\leq 1$

$\Rightarrow B=8[1-(x-2)^2]\leq 8$. Vậy GTLN của biểu thức là $8$ khi $x=2$

AH
Akai Haruma
Giáo viên
31 tháng 10 2020

c)

$C=5-x^2+2x-9y^2-6y=5-(x^2-2x)-(9y^2+6y)$

$=7-(x^2-2x+1)-(9y^2+6y+1)=7-(x-1)^2-(3y+1)^2$

Vì $(x-1)^2\geq 0; (3y+1)^2\geq 0$ với mọi $x,y$ nên $C=7-(x-1)^2-(3y+1)^2\leq 7$

Vậy GTLN của $C$ là $7$. Giá trị này đạt được tại $(x-1)^2=(3y+1)^2=0$

$\Leftrightarrow x=1; y=\frac{-1}{3}$

d)

$D=-5x^2-9y^2-7x+18y-2015=-(5x^2+7x)-(9y^2-18y)-2015$

$=-5(x^2+\frac{7}{5}x+\frac{7^2}{10^2})-9(y^2-2y+1)-\frac{40071}{20}$
$=-5(x+\frac{7}{10})^2-9(y-1)^2-\frac{40071}{20}$

$\leq -\frac{40071}{20}$

Vậy GTLN của biểu thức là $\frac{-40071}{20}$ khi $x=-\frac{-7}{10}; y=1$


2 tháng 7 2017

Ta có : C = 4x2 + 25y2 - 4x + 30y 

=> C = 4x2 - 4x + 25y2 + 30y

=> C = (4x2 - 4x + 1) + (25y2 + 30y + 9) - 10

=> C = (2x - 1)2 + (5y + 3)2 - 10 

Mà \(\left(2x-1\right)^2;\left(5y+3\right)^2\ge0\forall x\)

Nên C =  (2x - 1)2 + (5y + 3)2 - 10 \(\ge-10\forall x\)

Vậy giá trị nhỏ nhất của C là -10 tại x = \(\frac{1}{2}\) và y = \(-\frac{3}{5}\)

2 tháng 7 2017

Ta có:

4x^2+25y^2-4x+30y

=(4x^2-4x+1)+(25y^2+30y+9)-10

=(2x-1)^2+(5y+3)^2-10

Vì (2x-1)^2>=0 với mọi x; (5y+3)^2>=0 với mọi y

=>(2x-1)^2+(5y+3)^2>=0 với mọi x,y

=>(2x-1)^2+(5y+3)^2-10>=-10 với mọi x,y

Dấu "=" xảy ra <=>2x-1=0 và 5y+3=0

<=>x=1/2 và y=-3/5

3 tháng 9 2016

2) (a-1)2+(b-2)2+(2c-1)2=0

do (a-1)2, (b-2)2 và (2c-1)2 lớn hơn hoặc bằng 0 nên để thỏa mãn biểu thức trên thì (a-1)2, (b-2)và (2c-1)2 đồng thời bằng 0

suy ra a=1, b=2, c=1/2

5 tháng 7 2017

https://olm.vn/hoi-dapDễ z mà ko bít ..

8 tháng 8 2019

Sửa lại:

a, x2 + 6x + 9

8 tháng 8 2019

\(x^2+6x+9=x^2+2.x.3+3^2=\left(x+3\right)^2\)
Ely Bang Cái này là HĐT, nhìn cái là ra mà ==

20 tháng 8 2020

a)( 6x - 2)2  ( 5x - 2)2 - 2( 6x - 2 )( 5x - 2 ) 

=(6x-2)2-2(6x-2)(5x-2)+(5x-2)2
=[(6x-2)-(5x-2)]2
=(6x-2-5x+2)2

=X2
b) ( x2 + 3x + 1)2 - 2( x2 + 3x + 1)( 3x + 1) + ( 9x2 - 6x + 1)

=( x2 + 3x + 1)2 - 2( x2 + 3x + 1)( 3x + 1)+[(3x)2-2.3x.1+12]

=( x2 + 3x + 1)2 - 2( x2 + 3x + 1)( 3x + 1)+(3x+1)2
=[( x2 + 3x + 1)-(  3x + 1)]2
=( x2 + 3x + 1- 3x - 1)2
=(x2)2
=x4