![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài giải
a, Ta có : \(A=\frac{x^2-2+1995}{x^2}=\frac{x^2}{x^2}-\frac{2+1995}{x^2}=1-\frac{1997}{x^2}\)
\(A\text{ đạt GTNN khi }\frac{1997}{x^2}\text{ đạt GTLN}\)
\(\Rightarrow\text{ }x^2\text{ nhỏ nhất }\left(x\ne0\right)\) Mà \(x^2\ge0\text{ }\Rightarrow\text{ }x^2=1\text{ }\Rightarrow\text{ }x\in\left\{\pm1\right\}\)
\(\Rightarrow\text{ Min A }=1-\frac{1997}{1}=1-1997=-1996\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Vì: \(\left(x+1\right)^2\ge0\) , với mọi x
=> \(\left(x+1\right)^2+1\ge1\)
Vậy GTNN của bt đã cho là 1 khi \(x+1=0\Leftrightarrow x=-1\)
b) \(4x^2-x+1=4\left(x^2-\frac{x}{4}+\frac{1}{64}\right)+\frac{15}{16}=4\left(x-\frac{1}{8}\right)^2+\frac{15}{16}\)
Vì: \(4\left(x-\frac{1}{8}\right)^2\ge0\), vói mọi x
=> \(4\left(x-\frac{1}{8}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)
Vậy GTNN của bt trên là \(\frac{15}{16}\) khi \(x=\frac{1}{8}\)
c) \(3x^2-2x+1=3\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+\frac{2}{3}=3\left(x-\frac{1}{3}\right)^2+\frac{2}{3}\)
Vì: \(3\left(x-\frac{1}{3}\right)^2\ge0\), với mọi x
=> \(3\left(x-\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)
Vậy GTNN của bt đã cho là \(\frac{2}{3}\) khi \(x=\frac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
tìm GTNN:
a) \(x^2-2x+5\)
\(=x^2-2x+4+1\)
\(=\left(x-2\right)^2+1\ge1\)
vậy GTNN của biểu thức trên =1 khi x=2
a) Ta có : x2 - 2x + 5
= x2 - 2x + 1 + 4
= (x - 1)2 + 4
Mà (x - 1)2 \(\ge0\forall x\)
=> (x - 1)2 + 4 \(\ge4\forall x\)
Vậy GTNN của biểu thức là 4 khi x = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=x^2-20x+101=x^2-2.10x+100+1\)
\(=\left(x-10\right)^2+1\ge1\)
Vậy \(A_{min}=1\Leftrightarrow x=10\)
b) \(B=x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(B_{min}=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(9x^2-6x+2\)
\(=9x^2-6x+1+1\)
\(=\left(3x-1\right)^2+1\)
Ta có: \(\left(3x-1\right)^2\ge0\forall x\Rightarrow\left(3x-1\right)^2+1\ge1\forall x\)
Dấu "=" xảy ra khi 3x - 1 = 0
hay 3x = 1 hay \(x=\dfrac{1}{3}\)
Vậy GTNN của biểu thức là 1 khi x = \(\dfrac{1}{3}\).
b) \(x^2+x+1\)
\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu "=" xảy ra khi \(x+\dfrac{1}{2}=0\) hay \(x=-\dfrac{1}{2}\)
Vậy GTNN của biểu thức là \(\dfrac{3}{4}\) khi x = \(-\dfrac{1}{2}\).
c) \(2x^2+2x+1\)
\(=2\left(x^2+x\right)+1\)
\(=2\left(x^2+x+\dfrac{1}{4}-\dfrac{1}{4}\right)+1\)
\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)
Ta có: \(2\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\forall x\)
Dấu "=" xảy ra khi \(x+\dfrac{1}{2}=0\) hay \(x=-\dfrac{1}{2}\)
Vậy GTNN của biểu thức là \(\dfrac{1}{2}\) khi \(x=-\dfrac{1}{2}\).
d) \(x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu "=" xảy ra khi x - 1 = 0 hay x = 1
Vậy GTNN của biểu thức là 4 khi x = 1.
a) \(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\ge1\forall x\)
\(\Rightarrow\) GTNN của biểu thức là 1 khi \(\left(3x-1\right)^2=0\Leftrightarrow3x-1=0\Leftrightarrow3x=1\Leftrightarrow x=\dfrac{1}{3}\)
vậy GTNN của biểu thức là 1 khi \(x=\dfrac{1}{3}\)
b) \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
\(\Rightarrow\) GTNN của biểu thức là \(\dfrac{3}{4}\) khi \(\left(x+\dfrac{1}{2}\right)^2=0\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{-1}{2}\)
vậy GTNN của biểu thức là \(\dfrac{3}{4}\) khi \(x=\dfrac{-1}{2}\)
c) \(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{2}\right)=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=2\left(\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}\right)=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\forall x\)
\(\Rightarrow\) GTNN của biểu thức là \(\dfrac{1}{2}\) khi \(\left(x+\dfrac{1}{2}\right)^2=0\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{-1}{2}\)
vậy GTNN của biểu thức là \(\dfrac{1}{2}\) khi \(x=\dfrac{-1}{2}\)
d) \(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow\) GTNN của biểu thức là 4 khi \(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
vậy GTNN của biểu thức là 4 khi \(x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : x2 - 2x + 5
= x2 - 2x + 1 + 4
= (x - 1)2 + 4
Mà (x - 1)2 \(\ge0\forall x\)
Nên (x - 1)2 + 4 \(\ge4\forall x\)
Vậy GTNN của biểu thức là : 4 khi và chỉ khi x = 1
\(P=x^2-2x+5\)
\(P=x^2-2x+1+4\)
\(P=\left(x-1\right)^2+4\ge4\)
=> GTNN của P = 4
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy................
\(a,\text{ }x^2+x+1=x+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\text{Vì }\left(x+\frac{1}{2}\right)^2\ge0\text{ với mọi x nên: }\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\text{ với mọi x}\)
\(\text{Vậy GTNN của }x^2+x+1\text{ là }\frac{3}{4}\text{ tại }x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
\(b,2x^2+2x+1=2.\left(x^2+x+\frac{1}{2}\right)=2.\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)
\(=2.\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}=2.\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)
\(\text{Vì }2.\left(x+\frac{1}{2}\right)^2\ge0\text{ nên: }2.\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
\(\text{Vậy GTNN của }2x^2+2x+1\text{ là }\frac{1}{2}\text{ tại }x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)