K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình xin phép được sửa đề nhé :v

Tìm x :

\(x^2-x+5=x^2-2\)

\(\Leftrightarrow x^2-x-x^2=-7\)

\(\Leftrightarrow-x=-7\)

\(\Leftrightarrow x=7\)

Vậy \(x=7\)

Wish you study well !!

9 tháng 7 2018

Đây phải là giải phương trình chứ bn

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

27 tháng 8 2016

A=3x2-x+4

\(=3\left(x^2-\frac{x}{3}+\frac{4}{3}\right)\)

\(=3\left(x-\frac{1}{6}\right)^2+\frac{47}{12}\ge0+\frac{47}{12}=\frac{47}{12}\)

Dấu = khi \(x=\frac{1}{6}\)

Vậy MinA=\(\frac{47}{12}\Leftrightarrow x=\frac{1}{6}\)

 

 

 

27 tháng 8 2016

B=(x-2)(x-5)(x2-7x-10)

=(x2-7x+10)(x2-7x-10)

Đặt t=x2-7x+10 đc:

B=t(t-20)=t2-20t

=t2-20t+100-100

=(t-10)2-100

Thay t=x2-7x+10 ta đc: 

\(B=\left(x^2-7x+10-10\right)-100\ge0-100=-100\)

\(\Rightarrow B\ge-100\)

Dấu = khi \(\left[\begin{array}{nghiempt}x=0\\x=7\end{array}\right.\)

Vậy MinB=-100 khi \(\left[\begin{array}{nghiempt}x=0\\x=7\end{array}\right.\)

26 tháng 7 2016

x^2+x+1/4+3/4

=(x+1/2)^2+3/4

=> A min=3/4

Câu  kia tương tự .......

26 tháng 7 2016

\(A=x^2+x+1=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0,x\in R\)

nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},x\in R\)

Vậy \(Min_A=\frac{3}{4}\)khi \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

\(B=\left(x+2\right)^2+\left(x-3\right)^2=x^2+2x+1+x^2-6x+9=2x^2-4x+10=2\left(x^2-2x+5\right)\)

\(B=2\left(x^2-2x+1+4\right)=2\left(x-1\right)^2+4\)

Vì \(2\left(x-1\right)^2\ge0,x\in R\)

nên \(2\left(x-1\right)^2+4\ge4,x\in R\)

Vậy \(Min_B=4\)khi \(x-1=0\Rightarrow x=1\)

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1