![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Vì \(\left(2x+\frac{1}{4}\right)^4\ge0\forall x\)
\(\Rightarrow A\ge1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{8}\)
b) \(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
\(B=3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\)
Vì \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\forall x\)
\(\Rightarrow B\le3\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\)
với mọi x thì (2x+1/4)4>=0 (lớn hơn hoặc bằng )
A=(2x+1/4)4-1>=-1
để A đạt GTNN thì (2x+1/4)4=0
2x+1/4=0 =>x=-1/8
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có /x+1/ >/ 0 với mọi x
=> A>/ 5 với mọi x
=>Amax=5
Dấu "=" xảy ra<=>x+1=0<=>x=-1
B=(x^2+3)+12/(x^2+3)=1+(12/x^2+3)
ta có x^2+3 >/ 3 với mọi x
=>12/x^2+3 </ 12/3=4 với mọi x
=>B </ 1+4=5 với mọi x
Dấu "=" xảy ra<=>x=0
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Do \(\left(x+1\right)^2\ge0\); \(\left(y-\dfrac{1}{3}\right)^2\ge0\)
\(C=\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\)
Dấu "=" xảy ra khi \(x=-1;y=\dfrac{1}{3}\)
Vậy \(MIN_C=-10\) khi \(x=-1;y=\dfrac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = x + | x |
có ; \(\left|x\right|\ge0\forall x\)
=> \(x+\left|x\right|\ge x\forall x\)
dấu ''='' xảy ra <=> x =0
vậy gtnn của A là x tại x=0
b) ta có : \(\left|x-3\right|\ge0\forall x\in Z\)
dấu ''='' xảy ra <=> x-3=0
=> x=3
vậy gtnn của bt B là 0 tại x=3
c) | x - 2 | + | x - 4 |
\(C=\left|x-2\right|+\left|x-4\right|\ge\left|x-2\right|+\left|4-x\right|\ge\left|x-2+4-x\right|\ge2\)
dấu ''='' xảy ra <=> \(\left(x-2\right)\left(4-x\right)\ge0\)
\(\orbr{\begin{cases}x-2=0\\x-4=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=4\end{cases}}\)
vậy gtnn của bt C là 2 tại x ={2;4}
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(A=\left(x+2\right)\left(x-3\right)\)
\(A=x^2-x-6\)
Mà ta luôn có: \(x^2-x\ge0\)
Suy ra: \(A=x^2-x-6\ge-6\)
Vậy GTNN của A là -6 tại x=0
Ủa mik làm đúng mà sau lại dis
P/s: Sometimes I get angry with the people who dis my answer unconditionally. Therefore, u should comment down there for me to see my mistakes.