K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

A = ( x - 1 )2 + ( x + 2 )2

= x2 - 2x + 1 + x2 + 4x + 4

= 2x2 + 2x + 5

= 2( x2 + x + 1/4 ) + 9/2

= 2( x + 1/2 )2 + 9/2 ≥ 9/2 ∀ x

Dấu "=" xảy ra khi x = -1/2

=> MinA = 9/2 <=> x = -1/2

1 tháng 11 2020

\(\left(x-1\right)^2+\left(x+2\right)^2\)    

\(=x^2-2x+1+x^2+4x+4\)   

\(=2x^2+2x+5\)   

\(=2x^2+2x+\frac{1}{2}+\frac{9}{2}\)   

\(=2\left(x^2+x+\frac{1}{4}\right)+\frac{9}{2}\)   

\(=2\left(x+\frac{1}{2}\right)^2+\frac{9}{2}\)   

Ta có \(\left(x+\frac{1}{2}\right)^2\ge0\)   

\(2\left(x+\frac{1}{2}\right)\ge0\)    

\(2\left(x+\frac{1}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)   

Dấu = xảy ra 

\(\Leftrightarrow x+\frac{1}{2}=0\)   

\(x=-\frac{1}{2}\)    

Vậy GTNN của A là 9/2 khi và chỉ khi x = -1/2 

26 tháng 7 2016

x^2+x+1/4+3/4

=(x+1/2)^2+3/4

=> A min=3/4

Câu  kia tương tự .......

26 tháng 7 2016

\(A=x^2+x+1=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0,x\in R\)

nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},x\in R\)

Vậy \(Min_A=\frac{3}{4}\)khi \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

\(B=\left(x+2\right)^2+\left(x-3\right)^2=x^2+2x+1+x^2-6x+9=2x^2-4x+10=2\left(x^2-2x+5\right)\)

\(B=2\left(x^2-2x+1+4\right)=2\left(x-1\right)^2+4\)

Vì \(2\left(x-1\right)^2\ge0,x\in R\)

nên \(2\left(x-1\right)^2+4\ge4,x\in R\)

Vậy \(Min_B=4\)khi \(x-1=0\Rightarrow x=1\)

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

22 tháng 9 2016

a) \(x^2+2x+3\)

\(=x^2+2x+1+2\)

\(=\left(x^2+2x+1\right)+2\)

\(=\left(x+1\right)^2+2\)

Ta có:

\(\left(x+1\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+1\right)^2+2\ge2\)

Vậy MinA = 2 khi

\(\left(x+1\right)^2+2=2\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

22 tháng 9 2016

MIN A = 2 <=> X= -1 
MIN B = 7/4 <=> X = -1/2
MAX E = 10<=> X= 3 
MAX P = `<=> X= 1

28 tháng 6 2016

3. 

P=(x+y)(x^2-xy+y^2)+xy

P=x^2+y^2-xy+xy

P=x^2+y^2