K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

\(a,2x^2+8x+5\)

\(=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\dfrac{8}{2\sqrt{2}}+\left(\dfrac{8}{2\sqrt{2}}\right)^2-\left(\dfrac{8}{2\sqrt{2}}\right)^2+5\)

\(=\left[\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\dfrac{8}{2\sqrt{2}}+\left(\dfrac{8}{2\sqrt{2}}\right)^2\right]-\left(\dfrac{8}{2\sqrt{2}}\right)^2+5\)

\(=\left(\sqrt{2}x+\dfrac{8}{2\sqrt{2}}\right)^2-3\)

Ta có :

\(\left(\sqrt{2}x+\dfrac{8}{2\sqrt{2}}\right)^2\ge0\forall x\)

\(\Rightarrow\left(\sqrt{2}x+\dfrac{8}{2\sqrt{2}}\right)^2-3\ge-3>0\)

Dấu = xảy ra khi \(\sqrt{2}x+\dfrac{8}{2\sqrt{2}}=0\Rightarrow x=-2\)

Các câu còn lại dễ rồi mk ko lm nx nha bn ,bn ko bt lm cỗ nào thì hỏi mk

17 tháng 10 2017

\(z^4-4z^3+z^2+4z^2-4z+1\)

\(=z^4-4z^3+z^2+4z^2-4z+1\)

\(=\left(z^4-4z^3+z^2\right)+\left(4z^2-4z+1\right)\)

\(=z^2\left(z^2-4z+1\right)+\left(4z^2-4z+1\right)\)

\(=z^2\left(z^2-4z+1\right)+\left[\left(2z\right)^2-2.2z.1+1^2\right]\)

\(=z^2\left(z-1\right)^2+\left(2z-1\right)^2\)

Ta có :

\(z^2\left(z-1\right)^2\ge0;\left(2z-1\right)^2\ge0\)

\(\Rightarrow z^2\left(z-1\right)^2+\left(2z-1\right)^2\ge0\) Dấu = xảy ra khi \(\left\{{}\begin{matrix}z-1=0\\2z-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=1\\z=\dfrac{1}{2}\end{matrix}\right.\)
27 tháng 7 2017

\(a,\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-\left(x^2-2x+1\right)-3\left(x^2-1\right)\)

\(=x^2+2x+1-x^2+2x-1-3x^2+2=-3x^2+4x+2\)\(b,5\left(x+2\right)\left(x-2\right)-\left(2x-3\right)^2-x^2+17\)

\(=5\left(x^2-4\right)-\left(4x^2-12x+9\right)-x^2+17\)

\(=5x^2-20-4x^2+12x-9-x^2+17=12x-12\)

26 tháng 9 2017

a) \(x^3-\dfrac{1}{9}x=0\)

\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)

\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)

b) \(x\left(x-3\right)+x-3=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)

c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)

\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)

\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)

d) \(x^2\left(x-3\right)+27-9x=0\)

\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)

\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)

\(\Rightarrow x-3=0\Rightarrow x=3.\)

4 tháng 10 2017

\(\dfrac{2}{5}\)

29 tháng 8 2017

Tự làm đê em ơi cô Viết cho xong lên mạng chứ j

30 tháng 8 2017

thg kia m nói ai là em hả

22 tháng 10 2017

Đặt tính \(2n^2-n+2\) : \(2n+1\) sẽ bằng n - 1 dư 3

Để chia hết thì 3 phải chia hết cho 2n + 1 hay 2n + 1 là ước của 3

Ư(3) = {\(\pm\) 3; \(\pm\) 1}

\(2n+1=1\Leftrightarrow2n=0\Leftrightarrow n=0\)

\(2n+1=-1\Leftrightarrow2n=-2\Leftrightarrow n=-1\)

\(2n+1=3\Leftrightarrow2n=2\Leftrightarrow n=1\)

\(2n+1=-3\Leftrightarrow2n=-4\Leftrightarrow n=-2\)

Vậy \(n=\left\{0;-2;\pm1\right\}\)

11 tháng 10 2017

oho

19 tháng 11 2017

a, Vì x2 ≥ 0 , 2y2 ≥ 0 với mọi x,y

=>x2+2y2+ 1 ≥ 1

=>Phân thức trên luôn có nghĩa

19 tháng 11 2017

cảm ơn bạn nhoahaha

4 tháng 9 2017

a) \(7x^2-28=0\Leftrightarrow7\left(x^2-4\right)=0\Leftrightarrow x^2-4=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\) vậy \(x=2;x=-2\)

b) \(\left(2x+1\right)+x\left(2x+1\right)=0\Leftrightarrow\left(x+1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\2x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\2x=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{-1}{2}\end{matrix}\right.\) vậy \(x=-1;x=\dfrac{-1}{2}\)

c) \(2x^3-50x=0\Leftrightarrow2x\left(x^2-25\right)=0\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\x-5=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\) vậy \(x=0;x=5;x=-5\)

d) \(9\left(3x-2\right)=x\left(2-3x\right)\Leftrightarrow9\left(3x-2\right)=-x\left(3x-2\right)\)

\(\Leftrightarrow9\left(3x-2\right)+x\left(3x-2\right)=0\Leftrightarrow\left(9+x\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}9+x=0\\3x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\3x=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x=-9;x=\dfrac{2}{3}\)

e) \(5x\left(x-3\right)-2x+6=0\Leftrightarrow5x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(5x-2\right)\left(x-3\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}5x-2=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=2\\x=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\x=3\end{matrix}\right.\) vậy \(x=\dfrac{2}{5};x=3\)

11 tháng 9 2017

Bài 1:

a) \(9x^2-6x+2\)

\(\Leftrightarrow9x^2-6x+1+1\)

\(\Leftrightarrow\left(3x-1\right)^2+1\)

\(\left(3x-1\right)^2\ge0\forall x,1>0\)

\(\Rightarrow9x^2-6x+2\) luôn dương với mọi x.

b) \(x^2+x+1\)

\(\Leftrightarrow x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x,\dfrac{3}{4}>0\)

\(\Rightarrow x^2+x+1\) luôn dương với mọi x.

Bài 2 :

a) \(A=x^2-3x+5\)

\(\Leftrightarrow A=x^2-3x+2+3\)

\(\Leftrightarrow A=\left(x-2\right)\left(x-1\right)+3\)

\(\left(x-2\right)\left(x-1\right)\ge0\forall x\) => \(A\ge3\)

Vậy GTNN A đạt được = 3 khi và chỉ khi x = 2 hoặc x = 1.

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\(\Leftrightarrow B=4x^2-4x+1+x^2+4x+4\)

\(\Leftrightarrow B=5x^2+5\)

\(\Leftrightarrow B=5\cdot\left(x^2+1\right)\)

\(x^2+1\ge1\forall x\)

=> GTNN của B đạt được = 5 khi và chỉ khi x = 0.

Bài 3 :

a) \(A=-x^2+2x+4\)

Làm tương tự ta có \(A_{MAX}=5\) khi và chỉ khi x = 1.

b) \(B=-x^2+4x\)

Làm tương tự ta có \(B_{MAX}=4\) khi và chỉ khi x = 2.