Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x³ - 64x = 0
x(x² - 64) = 0
x(x - 8)(x + 8) = 0
x = 0 hoặc x - 8 = 0 hoặc x + 8 = 0
*) x - 8 = 0
x = 8
*) x + 8 = 0
x = -8
Vậy x = -8; x = 0; x = 8
b) x³ - 4x² = -4x
x³ - 4x² + 4x = 0
x(x² - 4x + 4) = 0
x(x - 2)² = 0
x = 0 hoặc (x - 2)² = 0
*) (x - 2)² = 0
x - 2 = 0
x = 2
Vậy x = 0; x = 2
c) x² - 16 - (x - 4) = 0
(x - 4)(x + 4) - (x - 4) = 0
(x - 4)(x + 4 - 1) = 0
(x - 4)(x + 3) = 0
x - 4 = 0 hoặc x + 3 = 0
*) x - 4 = 0
x = 4
*) x + 3 = 0
x = -3
Vậy x = -3; x = 4
d) (2x + 1)² = (3 + x)²
(2x + 1)² - (3 + x)² = 0
(2x + 1 - 3 - x)(2x + 1 + 3 + x) = 0
(x - 2)(3x + 4) = 0
x - 2 = 0 hoặc 3x + 4 = 0
*) x - 2 = 0
x = 2
*) 3x + 4 = 0
3x = -4
x = -4/3
Vậy x = -4/3; x = 2
e) x³ - 6x² + 12x - 8 = 0
(x - 2)³ = 0
x - 2 = 0
x = 2
f) x³ - 7x - 6 = 0
x³ + 2x² - 2x² - 4x - 3x - 6 = 0
(x³ + 2x²) - (2x² + 4x) - (3x + 6) = 0
x²(x + 2) - 2x(x + 2) - 3(x + 2) = 0
(x + 2)(x² - 2x - 3) = 0
(x + 2)(x² + x - 3x - 3) = 0
(x + 2)[(x² + x) - (3x + 3)] = 0
(x + 2)[x(x + 1) - 3(x + 1)] = 0
(x + 2)(x + 1)(x - 3) = 0
x + 2 = 0 hoặc x + 1 = 0 hoặc x - 3 = 0
*) x + 2 = 0
x = -2
*) x + 1 = 0
x = -1
*) x - 3 = 0
x = 3
Vậy x = -1; x = -1; x = 3
Dòng cuối kết luận phải là \(\text{x }\in\text{ }\left\{-2;-1;3\right\}\) chứ ạ?
Lời giải:
1.
$(x-3)^2=4x^2+20x+25=(2x+5)^2$
$\Leftrightarrow (x-3)^2-(2x+5)^2=0$
$\Leftrightarrow (x-3-2x-5)(x-3+2x+5)=0$
$\Leftrightarrow (-x-8)(3x+2)=0$
$\Leftrightarrow -x-8=0$ hoặc $3x+2=0$
$\Leftrightarrow x=-8$ hoặc $x=-\frac{2}{3}$
2.
$2x(x-4)+x^2-16=0$
$\Leftrightarrow 2x(x-4)+(x-4)(x+4)=0$
$\Leftrightarrow (x-4)(2x+x+4)=0$
$\Leftrightarrow (x-4)(3x+4)=0$
$\Leftrightarrow x-4=0$ hoặc $3x+4=0$
$\Leftrightarrow x=4$ hoặc $x=-\frac{4}{3}$
We have : \(A=\)\(9x^2+8-12\)
=\(\left[\left(3x\right)^2-2.3x.2+4\right]+4\)
\(=\left(3x-2\right)^2+4\ge4\)(first)
But \(B=2\)(2)
From (1) and (2)
\(\Rightarrow A>B\)
A = -(x2+6x-11)
=-(x2+6x+9-20)
=-(x+3)2 + 20 \(\le20\)
vậy min A = 20
dấu = xảy ra khi x = -3
câu B bạn xem có nhầm đề hay thiếu gì k thì bổ sung nhé
Để A = 5 - 4x2 + 4 nhận giá trị lớn nhất
=> 4x2 nhỏ nhất mà x2 ≥ 0 ∀ x
=> 4x2 ≥ 0 mà 4x2 nhỏ nhất => 4x2 = 0
<=> x2 = 0 => x = 0
Khi đó : A = 5 - 0 + 4 = 9
Vậy A nhận giá trị nhỏ nhất là 9 <=> x = 0
Để ( x - 1 ) . ( x - 3 ) + 11 nhận giá trị nhỏ nhất
=> x - 1 và x - 3 trái dấu mà x - 1 > x - 3 ∀ x
\(\Rightarrow\orbr{\begin{cases}x-1>0\\x-3< 0\end{cases}}\Rightarrow\orbr{\begin{cases}x>-1\\x< 3\end{cases}}\)
=> x ∈ { 0 ; 1 ; 2 }
Ta xét các 3 trường hợp :
+) x = 0 => B = 14
+) x = 1 => B = 11
+) x = 2 => B = 10
Vậy B nhận giá trị nhỏ nhất là 10 <=> x = 2
a: Ta có: \(A=-x^2+2x+5\)
\(=-\left(x^2-2x-5\right)\)
\(=-\left(x^2-2x+1-6\right)\)
\(=-\left(x-1\right)^2+6\le6\forall x\)
Dấu '=' xảy ra khi x=1
b: Ta có: \(B=-x^2-8x+10\)
\(=-\left(x^2+8x-10\right)\)
\(=-\left(x^2+8x+16-26\right)\)
\(=-\left(x+4\right)^2+26\le26\forall x\)
Dấu '=' xảy ra khi x=-4
c: Ta có: \(C=-3x^2+12x+8\)
\(=-3\left(x^2-4x-\dfrac{8}{3}\right)\)
\(=-3\left(x^2-4x+4-\dfrac{20}{3}\right)\)
\(=-3\left(x-2\right)^2+20\le20\forall x\)
Dấu '=' xảy ra khi x=2
d: Ta có: \(D=-5x^2+9x-3\)
\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{3}{5}\right)\)
\(=-5\left(x^2-2\cdot x\cdot\dfrac{9}{10}+\dfrac{81}{100}-\dfrac{21}{100}\right)\)
\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{21}{20}\le\dfrac{21}{20}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{9}{10}\)
e: Ta có: \(E=\left(4-x\right)\left(x+6\right)\)
\(=4x+24-x^2-6x\)
\(=-x^2-2x+24\)
\(=-\left(x^2+2x-24\right)\)
\(=-\left(x^2+2x+1-25\right)\)
\(=-\left(x+1\right)^2+25\le25\forall x\)
Dấu '=' xảy ra khi x=-1
f: Ta có: \(F=\left(2x+5\right)\left(4-3x\right)\)
\(=8x-6x^2+20-15x\)
\(=-6x^2-7x+20\)
\(=-6\left(x^2+\dfrac{7}{6}x-\dfrac{10}{3}\right)\)
\(=-6\left(x^2+2\cdot x\cdot\dfrac{7}{12}+\dfrac{49}{144}-\dfrac{529}{144}\right)\)
\(=-6\left(x+\dfrac{7}{12}\right)^2+\dfrac{529}{24}\le\dfrac{529}{24}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{7}{12}\)
Đặt \(A=4x^4+12x^2+11\)
Ta có \(\left\{{}\begin{matrix}x^4\ge0\\x^2\ge0\end{matrix}\right.\) ; \(\forall x\)
\(\Rightarrow4x^4+12x^2\ge0;\forall x\)
\(\Rightarrow4x^4+12x^2+11\ge11;\forall x\)
\(\Rightarrow A_{min}=11\) khi \(x=0\)
Ta có: \(4x^4\ge0\forall x\)
\(12x^2\ge0\forall x\)
Do đó: \(4x^4+12x^2\ge0\forall x\)
\(\Leftrightarrow4x^4+12x^2+11\ge11\forall x\)
Dấu '=' xảy ra khi x=0