\(3X^2+8Y^2+8XY+8X+2020\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=3x^2+8y^2+8xy+2020=2x^2+8xy+8y^2+x^2+8x+16+2004.\)

\(=2\left(x^2+4xy+4y^2\right)+\left(x+4\right)^2+2004\)

\(=2\left(x+2y\right)^2+\left(x+4\right)^2+2004\)

ta thấy \(\left(x+4\right)^2\ge0\)dấu "=" xảy ra khi x=-4

và \(2\left(x+2y\right)^2\ge0\)dấu "=" xảy ra khi x=-2y

\(\Rightarrow\left(x+4\right)^2+2\left(x+2y\right)^2\ge0\)dấu "=" xảy ra khi x=4 và y=2

\(\Rightarrow\left(x+4\right)^2+2\left(x+2y\right)^2+2004\ge2004\)dấu "=" xảy ra khi x=4 và y=2

\(\Rightarrow A\ge2004\). dấu "=" xảy ra  khi x=4 và y=2

min a=2004 khi x=4 và y=2

21 tháng 6 2019

   \(3x^2+8y^2+8xy+8x+2020\)

\(=4x^2-x^2+4y^2+4y^2+8xy+8x+2036-16\)

\(=\left(4x^2+8xy+4y^2\right)+\left(-x^2+8x-16\right)+4y^2+2036\)

\(=4\left(x^2+2xy+y^2\right)-\left(x^2-8x+16\right)+4y^2+2036\)

\(=4\left(x+y\right)^2-\left(x-4\right)^2+4y^2+2036\)

Đặt \(A=4\left(x+y\right)^2-\left(x-4\right)^2\)

Đặt \(B=4y^2+2036\)

Vì \(4\left(x+y\right)^2\ge0\)

    \(\left(x-4\right)^2\ge0\)

\(\Rightarrow A=4\left(x+y\right)^2-\left(x-4\right)^2\ge0\)

\(\Rightarrow GTNN_A=0\)tại \(x=4\)và \(y=-4\)

Thế \(y=-4\)vào B, ta có:

\(B=4\left(-4\right)^2+2036\)

\(B=2100\)

Vậy GTNN của biểu thức trên bằng \(GTNN_A+B=0+2100=2100\)

20 tháng 6 2019

phân tích đa thức thành nhân tử đi

20 tháng 6 2019

1a) A = \(x^2-4x+2023=\left(x-2\right)^2+2019\)

Ta luôn có: (x - 2)2 \(\ge\)\(\forall\)x

 => (x - 2)2 + 2019 \(\ge\)2019 \(\forall\)x

Hay A \(\ge\)\(\forall\)x

Dấu "=" xảy ra khi : (x - 2)2 = 0 => x - 2 = 0 => x = 2

Nên Amin = 2019 khi x = 2

24 tháng 7 2019

Khó phết chứ chả đùa

24 tháng 7 2019

Bài 1:

1.Đặt \(A=x^2+y^2-3x+2y+3\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+y^2+2y+1+2\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{9}{4}+2\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\)

Vì \(\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0;\forall x\\\left(y+1\right)^2\ge0;\forall y\end{cases}}\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\ge0-\frac{1}{4};\forall x,y\)

Hay \(A\ge\frac{-1}{4};\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)

                       \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)

VẬY MIN A=\(\frac{-1}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)

25 tháng 8 2020

Đặt \(A=x^2+15y^2+xy+8x+y+2020\)

\(\Rightarrow4A=4x^2+60y^2+4xy+32x+4y+8080\)

\(=\left(4x^2+4xy+y^2\right)+59y^2+32x+4y+8080\)

\(=\left(2x+y\right)^2+16.\left(2x+y\right)+64+59y^2+4y-16y+8016\)

\(=\left(2x+y+8\right)^2+59y^2-12y+8016\)

\(=\left(2x+y+8\right)^2+59\cdot\left(y^2-\frac{59}{12}y\right)+8016\)

\(=\left(2x+y+8\right)^2+59\cdot\left(y^2-2\cdot y\cdot\frac{59}{24}+\frac{59^2}{24^2}-\frac{59^2}{24^2}\right)+8016\)

\(=\left(2x+y+8\right)^2+59\cdot\left(y-\frac{59}{24}\right)^2+7659,439236\ge7659,439236\)

\(\Rightarrow A\ge1914,859809\)

Dấu "=" xảy ra \(\Leftrightarrow y=\frac{59}{14};x=-\frac{171}{28}\)

P/s : Bài này hơi xấu .....

25 tháng 8 2020

Đặt \(A=x^2+15y^2+xy+8x+y+2020\)

Ta có: \(A=x^2+x\left(y+8\right)+15y^2+y+2020=\left(x^2+x\left(y+8\right)+\frac{\left(y+8\right)^2}{4}\right)\)\(+\left(15y^2+y-\frac{\left(y+8\right)^2}{4}\right)+2020=\left(x+\frac{y+8}{2}\right)^2+\frac{59y^2-12y-64}{4}+2020\)\(=\left(x+\frac{y+8}{2}\right)^2+\frac{59\left(y-\frac{6}{59}\right)^2-\frac{3812}{59}}{4}+2020\ge\frac{\frac{-3812}{59}}{4}+2020=\frac{118227}{59}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}y-\frac{6}{59}=0\\x=-\frac{y+8}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-239}{59}\\y=\frac{6}{59}\end{cases}}\)

26 tháng 3 2019

\(A=x^2-4xy+4y^2+\frac{x}{2}+\frac{2}{x}+3=\left(x-2y\right)^2+\left(\frac{x}{2}+\frac{2}{x}\right)+3\)

\(\left(x-2y\right)^2\ge0\)

\(\frac{x}{2}+\frac{2}{x}\ge2\sqrt{\frac{x}{2}.\frac{2}{x}}=2\)

\(A\ge0+2+3=5\)

Giá trị nhỏ nhất của A bằng 5 

"=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2y=0\\\frac{x}{2}=\frac{2}{x}\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)vì x dương

29 tháng 9 2019

\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)

\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)

Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)

\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)

Đẳng thức xảy ra khi x =0

Tí làm tiếp

29 tháng 9 2019

c)Đề sai:v

d) ĐK: \(x\ne1\). Bài này chỉ có min thôi nha!

\(D=\frac{3x^2-8x+6-2x^2+4x-2}{x^2-2x+1}+\frac{2\left(x^2-2x+1\right)}{x^2-2x+1}\)

\(=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+2\ge2\)

Đẳng thức xảy ra khi x = 2