Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+6x+10\)
\(=\left(x^2+2.x.3+3^2\right)-3^2+10\)
\(=\left(x+3\right)^2+1\)
\(Có:\left(x+3\right)^2\ge0\) \(\text{với mọi x}\)
\(\Rightarrow\left(x+3\right)^2+1\ge0+1=1\text{với mọi x}\)
\(\text{GTNN của biểu thức A là 1}\)
\(\text{khi x+3=0 hay x=-3}\)
\(B=3x^2+15x+7\)
\(=3\left(x^2+5x+\frac{7}{3}\right)\)
\(=3\left[x^2+2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2\right]-\left(\frac{5}{2}\right)^2+\frac{7}{3}\)
\(=3\left(x+\frac{5}{2}\right)^2-\frac{47}{12}\)
\(Có:\left(x+\frac{5}{2}\right)^2\ge0\) \(\text{với mọi x}\)
\(\Rightarrow3\left(x+\frac{5}{2}\right)^2-\frac{47}{12}\ge3.0-\frac{47}{12}=-\frac{47}{12}\text{với mọi x}\)
\(\Rightarrow\text{GTNN của biểu thức B là -}\frac{47}{12}\)
\(\text{khi}x+\frac{5}{2}=0hayx=-\frac{5}{2}\)
\(A=9x^2+6x-7\)
\(\Rightarrow A=\left(3x\right)^2+2\cdot3x+1-8\)
\(\Rightarrow A=\left(3x+1\right)^2-8\ge-8\)
Vậy GTNN của A là -8
A\(=9x^2+6x-7\)
\(=9\left(x^2+\dfrac{2}{3}x-\dfrac{7}{9}\right)\)
\(=9\left(x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{-8}{9}\right)\)
\(=9\left(x+\dfrac{1}{3}\right)^2+\left(-8\right)\)
Vì \(\left(x+\dfrac{1}{3}\right)^2\ge0\)
\(\Rightarrow\left(x+\dfrac{1}{3}\right)^2+\left(-8\right)\ge-8\)
Dấu = xảy ra khi x+\(\dfrac{1}{3}=0\Rightarrow x=\dfrac{-1}{3}\)
Vậy GTNN của A=-8 khi x=\(\dfrac{-1}{3}\)
a) 3 x^2 - 6x - 1
= 3 ( x^2 - 2x - 1/3 )
= 3 ( x^2 - 2x + 1 - 4/3)
= 3 [ ( x- 1 )^2 - 4/3)
=3 ( x- 1 )^2 - 4
Vì 3 ( x- 1 )^2 >=0 => 3 ( x- 1 )^2 - 4 >= 4
VẬy GTNN là 4 khi x- 1 = 0 => x = 1
b ) ( x- 1 )( x +2 )( x+ 3 )( x+6 )
= ( x - 1 )( x+ 6 )( x+ 2 )( x+ 3 )
= ( x^2 + 5x - 6 ) . ( x^2 + 5x + 6 )
Đặt x^2 + 5x = t ta có :
= ( t- 6 )( t+ 6 )
= t^2 - 36
Vì t^2 >=0 => t^2 -36 >= -36
VẬy GTNN là -36 khi x ^2 + 5x = 0 => x = 0 hoặc x = 5
Nhớ ****
Ta có : A = x3 - 3x2 + 3x + 5
= (x3 - 3x2 + 3x - 1) + 6
A = (x - 1)3 + 6
Vì x\(\ge2\) nên : ( x - 1)3 \(\ge1\)
Suy ra : A = (x - 1)3 + 6 \(\ge1+6\)
Vậy A = \(\ge7\)
\(A=3x^2+6x+7\)
\(A=\left(3x^2+6x+3\right)+4\)
\(A=3\left(x^2+2x+1\right)+4\)
\(A=3\left(x+1\right)^2+4\)
\(\left(x+1\right)^2\ge0\Rightarrow3\left(x+1\right)^2\ge0\Rightarrow3\left(x+1\right)^2+4\ge4\)
\(\Rightarrow A\ge4\)
dấu "=" xảy ra khi :
(x + 1)2 = 0 => x + 1 = 0 => x = -1
vậy gtnn của A = 4 khi x = -1