Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Do x,y∈Z và 3x+2y=1 ⇒xy<0
3x+2y=1⇔y= -x+\(\dfrac{1-x}{2}\)
Đặt \(\dfrac{1-x}{2}\)=t (t ∈ Z)
⇒x = 1 - 2t ; y = 3t - 1
khi đó : H = t\(^2\) -3t + |t| -1
nếu t ≥ 0⇒ H =( t -1 ) - 2 ≥ - 2
Dấu "=" xảy ra ⇔t=1
nếu t < 0 ⇒ H = t\(^2\) -4t - 1 > -1> -2
vậy GTNN của H là -2 khi t=1⇒ \(\begin{cases}x=-1\\y=2\end{cases}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Với a>0,b>0a>0,b>0 ta luôn có a+b≥2ab−−√a+b≥2ab
M = x2+y2xy=xy+yx=3xy+(x4y+yx)x2+y2xy=xy+yx=3xy+(x4y+yx)
Ta có: (x4y+yx)≥2x4y⋅yx−−−−−−√=1(x4y+yx)≥2x4y⋅yx=1
Mặt khác: x≥2yx≥2y ⇒3x4y≥32⇒3x4y≥32
Do đó M≥52M≥52 . Dâu ''='' xảy ra khi x=2yx=2y
Vậy giá trị nhỏ nhất của M là 5252 ⇔x=2y
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)
\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)
\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)
\(=5\left(a+b\right)=5.2016=10080\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT AM-GM ta có:
\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}\cdot\frac{y+3z}{16}\cdot\frac{1}{4}\cdot\frac{1}{4}}=x\)
\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\).Tương tự ta có:
\(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{x+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)
Cộng theo vế ta có:
\(P\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}\cdot3-\frac{3}{2}=\frac{3}{4}\)
Dấu "=" khi x=y=z=1
![](https://rs.olm.vn/images/avt/0.png?1311)
x^2+xy+3x+2y=1 tương đương y=(1-x^2-3x)/(x+2) suy ra x+2 thuộc ước của 3