K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2020

\(\frac{120+3}{a}\)GTNN

\(\Rightarrow A\le0\)

\(\Leftrightarrow\frac{120+3}{a}\le0\) dấu ''='' xảy ra khi

\(th1\orbr{\begin{cases}120+3\le0\\a\ge0\end{cases}}\Leftrightarrow0\le a\le123\left(tm\right)\)

\(th2\orbr{\begin{cases}120+3\ge0\\a\le0\end{cases}}\Leftrightarrow123\le a\le0\left(loai\right)\)

vậy GTNN của A LÀ 1

19 tháng 7 2020

đề sai , nếu đúng thì :

Nếu \(Min_A\)thì \(Max_a\)!

29 tháng 1 2017

cách 1: đặt a = x+2 ,=> A= (a-3)4+(a+3)4-120

tách ra là ổn

cách 2 : áp dụng BĐT bunyakovsky:

(1+1)(a2+b2)\(\ge\)(a+b)2=> a2+b2\(\ge\)\(\frac{\left(a+b\right)^2}{2}\)(dấu = xảy ra khi a=b)

A= (x-1)4+(x+5)4-120=(1-x)4+(x+5)4-120\(\ge\)\(\frac{1}{2}\left[\left(x-1\right)^2+\left(x+5\right)^2\right]^2-120\)

\(A\ge\frac{1}{2}\left(2x^2+8x+26\right)^2-120=\frac{1}{2}\left[2\left(x+2\right)^2+18\right]^2-120\ge\frac{18^2}{2}-120=42\)

dấu = xảy ra khi 1-x=x+5 và x+2=0

=> x=-2

21 tháng 12 2016

Ta có: (x-1)\(^4\) \(\ge\) 0 với mọi x

(x+5)\(^4\) \(\ge\) 0 với mọi x

\(\Rightarrow\) (x-1)\(^4\) + (x+5)\(^4\) \(\ge\) 0 với mọi x

\(\Rightarrow\) (x-1)\(^4\) + (x+5)\(^4\) -120 \(\ge\) -120 với mọi x

=> A\(\ge\) -120

=> GTNN của A bằng -120

5 tháng 6 2016

a, ap dung bunhiacopxki 

(1+1+1)A\(\ge\)(x+y+z)2=9

A\(\ge\)

Dau bang xay ra khi x=y=z=1

b, co Bmax ko co Bmin

20 tháng 10 2015

a,\(PT\Leftrightarrow x^2-3x=x^2+2x+1-7\Leftrightarrow-5x=6\Rightarrow x=...\)

b, \(y=4x^2-3\ge-3\)

Do đó y đạt giá trị nhỏ nhất khi x=0.

Mấy câu kia cũng đơn giản mà....dùng HĐT, phân tích thành nhân tử/......cứ thế mà làm..thay đổi chút thôi...

26 tháng 7 2016

x^2+x+1/4+3/4

=(x+1/2)^2+3/4

=> A min=3/4

Câu  kia tương tự .......

26 tháng 7 2016

\(A=x^2+x+1=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0,x\in R\)

nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},x\in R\)

Vậy \(Min_A=\frac{3}{4}\)khi \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

\(B=\left(x+2\right)^2+\left(x-3\right)^2=x^2+2x+1+x^2-6x+9=2x^2-4x+10=2\left(x^2-2x+5\right)\)

\(B=2\left(x^2-2x+1+4\right)=2\left(x-1\right)^2+4\)

Vì \(2\left(x-1\right)^2\ge0,x\in R\)

nên \(2\left(x-1\right)^2+4\ge4,x\in R\)

Vậy \(Min_B=4\)khi \(x-1=0\Rightarrow x=1\)

22 tháng 10 2015

bạn vào câu hỏi tương tự rồi tìm là ra bạn ạ

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

28 tháng 1 2017

đặt y=x+2 ta có

(y-3)4 +(y+3)4=y4-12y3+54y2- 108y+81+y4+12y3+54y2+108y+81-120

=2y4+108y2+162-120

=2y4 +108y2+42\(\ge\) 42(vì2y4 +108y2\(\ge\)0)

dấu "=" xảy ra <=>y=0<=>x+2=0<=>x=-2

vậy min A=42khi x=-2

30 tháng 1 2017

với hằng đẳng thức mũ 4 bạn lấy 2 số cộng lại với nhau chia 2

vd như phép tính trên lấy (-1+5):2=2