K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

b, -(2x-1)2+10I2x-1I+2018

Vì :

(2x-1)2 >= 0  với mọi x

=> -(2x-1)2 =< -0 với mọi x    1

I2x-1I >= 0 với mọi x

=> 10I2x-1I >= 0 với mọi x    2

Từ (1) và (2) : 

=> -(2x-1)2+10I2x-1I =< -0 với mọi x

=> -(2x-1)2+10I2x-1I +2018 =< -0+2018  với mọi x

=> -(2x-1)2+10I2x-1I +2018 =< - 2018       với mọi x   

=> GTLN là -2018

Vậy GTLN là -2018 .

  

25 tháng 12 2017

ta có B=\(\frac{x^2-8x+1}{x^2+1}=\frac{-\left(x^2+1\right)+2\left(x^2-4x+4\right)}{x^2+1}=-1+\frac{2\left(x-2\right)^2}{x^2+1}\ge-1\)

=>b>= -1

dấu = xảy ra <=> x=2

Ta có =\(\frac{x^2-8x+7}{x^2+1}=\frac{9\left(x^2+1\right)-2\left(4x^2+4x+1\right)}{x^2+1}=9-\frac{2\left(2x+1\right)^2}{x^2+1}\le9\) 

=> B<=9, dấu = xảy ra <=> x=-1/2

25 tháng 7 2016

a) = 3(x2-2x+1) +1-3

GTNN = -2

B) tt

19 tháng 7 2016

A= 5-8x-x2

=-x2-8x+21-16

=21-(x2+8x+16)

=21-(x+4)2\(\ge\)21-0=21

Dấu = khi x=-4

Vậy Amax=21 khi x=-4

B= x2+x+1

\(=x^2+\frac{x}{2}+\frac{x}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}\)

Dấu = khi x=-1/2

Vậy Bmin=3/4 khi x=-1/2

23 tháng 7 2016

làm a)  GTLN = -2( x2 -4x +2) + 4 

GTLN =4

1 tháng 7 2019

Tìm GTLN:

\(A=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x^2-2.x.3+9+6\right)\)

\(=-\left(x+3\right)^2-6\le0\forall x\)

Dấu = xảy ra khi: 

   \(x-3=0\Leftrightarrow x=3\)

Vậy Amax = - 6 tại x = 3

Tìm GTNN :

\(A=x^2-4x+7\)

\(=x^2+2.x.2+4+3\)

\(=\left(x+2\right)^2+3\ge0\forall x\)

Dấu = xảy ra khi:

   \(x+2=0\Leftrightarrow x=-2\)

Vậy Amin = 3 tại x = - 2

Các câu còn lại làm tương tự nhé... :)

2 tháng 7 2019

giải hết i

23 tháng 7 2016

b.\(\left(x^2+x+1\right)^2\ge0\) vs mọi x

=>\(\left(x^2+x+1\right)^2-\frac{13}{14}\ge-\frac{13}{14}\)

=> bt đạt GTNN =-13/14 

c. \(\left(x^2-x+1\right)^2\ge0\) vs mọi x

=> \(\left(x^2-x+1\right)^2+2016\ge2016\)

=> bt đạt GTNN =2016

23 tháng 7 2016

a) 8x-2x^2=-2(x^2-4x)=-2[(x^2-4x+4)-4]=-2(x-2)^2+8 luôn luôn lớn hơn hoặc bằng 8 với mọi x.                                                                                                                            Dấu bằng xảy ra khi và chỉ khi (x-2)^2=0                                                                                                                       <=> x-2=0                                                                                                                     <=>x=2

Vậy GTLN là 8 khi và chỉ khi x=2