\(\sqrt{3x-5}+\sqrt{7-3x}\) vs \(\dfrac{5}{3}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

a,\(\sqrt{3x+1}=3x-1\) Đk:\(x\ge\dfrac{-1}{3}\)

\(< =>3x+1=9x^2-6x+1\)

\(< =>9x-9x^2=0\)

\(< =>9x\left(1-x\right)=0\)

\(< =>x=0\) hoặc \(x=1\)
b,\(2+\sqrt{3x-5}=x+1\) Đk:\(x\ge\dfrac{5}{3}\)

\(< =>\sqrt{3x-5}=x-1\)

\(< =>3x-5=x^2-2x+1\)

\(< =>x^2+x+6=0\)(vô lý vì \(x^2\ge\dfrac{25}{9},x\ge\dfrac{5}{3}\))

=>\(x\in\varnothing\)

c,Đk : \(x\ge\dfrac{-7}{5}\)

\(\)\(\dfrac{5x+7}{x+3}=16\)

\(< =>5x+7=16x+48\)

\(< =>-11x=41 \)

\(< =>x=\dfrac{-41}{11}\)(ko tm đk)

\(=>x\in\varnothing\)

d,tương tự câu c bình phương 2 vế cũng ra \(x\in\varnothing\)

2 tháng 1 2019

1) Để biểu thức \(\sqrt{-2x+3}\) xác định thì \(-2x+3\ge0\Leftrightarrow-2x\ge-3\Leftrightarrow x\le\dfrac{3}{2}\)

2) Để biểu thức \(\sqrt{\dfrac{2}{x^2}}\) xác định thì \(\left\{{}\begin{matrix}x^2\ge0\\x^2\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(x\ne0\)

3) Để biểu thức \(\sqrt{\dfrac{4}{x+3}}\) xác định thì \(\left\{{}\begin{matrix}x+3\ge0\\x+3\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge-3\\x\ne-3\end{matrix}\right.\)\(\Leftrightarrow x>-3\)

4) Ta có -5<0

x2+6>0

Suy ra \(\dfrac{-5}{x^2+6}< 0\)

Vậy với mọi x thì \(\sqrt{\dfrac{-5}{x^2+6}}\) sẽ không xác định

5) Để biểu thức \(\sqrt{3x+4}\) xác định thì \(3x+4\ge0\Leftrightarrow3x\ge-4\Leftrightarrow x\ge\dfrac{-4}{3}\)

6) Ta có \(x^2\ge0\Leftrightarrow x^2+1\ge1>0\)

Vậy với mọi x thì biểu thức \(\sqrt{1+x^2}\) sẽ luôn xác định

7) Để biểu thức \(\sqrt{\dfrac{3}{1-2x}}\) xác định thì \(\left\{{}\begin{matrix}1-2x\ge0\\1-2x\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}2x\le1\\2x\ne1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x\ne\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow x< \dfrac{1}{2}\)

8) Để biểu thức \(\sqrt{\dfrac{-3}{3x+5}}\) xác định thì \(\left\{{}\begin{matrix}3x+5\le0\\3x+5\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3x\le-5\\3x\ne-5\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\le\dfrac{-5}{3}\\x\ne\dfrac{-5}{3}\end{matrix}\right.\)\(\Leftrightarrow x< \dfrac{-5}{3}\)

2 tháng 1 2019

Cảm ơn bạn nhìu nha!

3 tháng 6 2018

a) Vì biểu thức \(\sqrt{\dfrac{-5}{x^2+6}}\)có -5<0 nên làm cho cả phân số âm

Từ đó suy ra căn thức vô nghiệm

Vậy không có giá trị nào của x để biểu thức trên xác định

b) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)

Để biểu thức trên xác định thì chia ra 4 TH (vì để xác định thì cả x-1 và x-3 cùng dương hoặc cùng âm)

\(\left[\begin {array} {} \begin{cases} x-1\geq0\\ x-3\geq0 \end{cases} \Leftrightarrow \begin{cases} x\geq1\\ x\geq3 \end{cases} \Rightarrow x\geq3 \\ \begin{cases} x-1\leq0\\ x-3\leq0 \end{cases} \Leftrightarrow \begin{cases} x\leq1\\ x\leq3 \end{cases} \Rightarrow x\leq1 \end{array} \right.\)

c) \(\sqrt{x^2-4}\) \(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}\)

Rồi làm như câu b

d) \(\sqrt{\dfrac{2-x}{x+3}}\)

Để biểu thức trên xác định thì

\(\begin{cases}2-x\ge0\\x+3>0\end{cases}\Leftrightarrow\begin{cases}x\ge2\\x>-3\end{cases}\) \(\Rightarrow\) \(x\ge2\) hoặc \(x>-3\)

e) Ở các biểu thức sau này nếu chỉ có căn thức có ẩn và + (hoặc trừ) với 1 số thì chỉ cần biến đổi cái có ẩn còn cái số thì kệ xác nó đi haha )

\(\sqrt{x^2-3x}\Leftrightarrow\sqrt{x\left(x-3\right)}\)

Để biểu thức trên xác định thì \(x\ge0\)\(x-3\ge0\Leftrightarrow x\ge3\)

Bữa sau mình làm tiếp

11 tháng 2 2020

A = \(x^2+3x-7=x^2+2x\frac{3}{2}+\frac{9}{4}-\frac{37}{4}\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{37}{4}\ge-\frac{37}{4}\)

\(\Rightarrow\)min A = \(-\frac{37}{4}\Leftrightarrow x=-\frac{3}{2}\)

B = \(x-5\sqrt{x}-1\) ĐKXĐ: \(x\ge0\)

\(=x-2\sqrt{x}\frac{5}{2}+\frac{25}{4}-\frac{29}{4}=\left(\sqrt{x}-\frac{5}{2}\right)^2-\frac{29}{4}\ge-\frac{29}{4}\)

\(\Rightarrow\)min B = \(-\frac{29}{4}\Leftrightarrow x=\frac{25}{4}\)( thỏa mãn)

C = \(\frac{-4}{\sqrt{x}+7}\) ĐKXĐ:\(x\ge0\)

Ta có: \(\sqrt{x}+7\ge7\Rightarrow\frac{4}{\sqrt{x}+7}\le\frac{4}{7}\)\(\Leftrightarrow\frac{-4}{\sqrt{x}+7}\ge-\frac{4}{7}\)

\(\Rightarrow\)min C = \(-\frac{4}{7}\Leftrightarrow x=0\)

D = \(\frac{\sqrt{x}+1}{\sqrt{x}+3}\) ĐKXĐ:\(x\ge0\)

\(=1-\frac{2}{\sqrt{x}+3}\ge1-\frac{2}{3}=\frac{1}{3}\)

\(\Rightarrow\)min D = \(\frac{1}{3}\Leftrightarrow x=0\)

11 tháng 2 2020

E = \(\frac{x+7}{\sqrt{x}+3}\) ĐKXĐ:\(x\ge0\)

\(=\frac{x-9+16}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+16}{\sqrt{x}+3}=\sqrt{x}-3+\frac{16}{\sqrt{x}+3}=\sqrt{x}+3+\frac{16}{\sqrt{x}+3}-6\ge2\sqrt{16}-6=2\)

\(\Rightarrow\)min E = \(2\Leftrightarrow x=1\)(thỏa mãn)

F = \(\frac{x^2+3x+5}{x^2}\) ĐKXĐ: \(x\ne0\)

\(\Leftrightarrow\)\(x^2\left(F-1\right)-3x-5=0\)

△ = \(3^2+20\left(F-1\right)\ge0\)\(\Leftrightarrow F\ge\frac{11}{20}\)

\(\Rightarrow\)min F = \(\frac{11}{20}\Leftrightarrow x=-\frac{10}{3}\)( thỏa mãn)

1 tháng 10 2017

bài 1

biểu thức có nghĩa khi x, y thỏa mãn đồng thời

\(\left\{{}\begin{matrix}x,y\ne0\\\dfrac{y}{x}\ge0\end{matrix}\right.\Rightarrow x.y>0}\)x, y khác 0

x.y>0

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

1)

ĐK: \(x\geq 5\)

PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

2)

ĐK: \(x\geq -1\)

\(\sqrt{x+1}+\sqrt{x+6}=5\)

\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)

\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)

\(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$

\(\Rightarrow x=3\) (thỏa mãn)

Vậy .............

2 tháng 1 2019

1/ \(x\ge\dfrac{1}{3}\)

2/ \(\forall x\in R\)

3/ \(x\le\dfrac{5}{2}\)

4/ \(x\in\left(-\infty,-\sqrt{2}\right)\cup\left(\sqrt{2},+\infty\right)\)

5/ \(x>2\)

6/ \(x^2-3x+7\ge0\Rightarrow\forall x\in R\)

7/ \(x\ge\dfrac{1}{2}\)

8/ \(x\in\left(-\infty,-3\right)\cup\left(3,+\infty\right)\)

9/ \(\dfrac{x+3}{7-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\7-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3\le x< 7\\7< x< -3\left(voli\right)\end{matrix}\right.\)

10/ \(\left\{{}\begin{matrix}6x-1\ge0\\x+3\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{6}\\x\ge-3\end{matrix}\right.\Leftrightarrow x\ge\dfrac{1}{6}\)

*Căn thức luôn không âm & mẫu chứa căn luôn dương

2 tháng 1 2019

1) Để biểu thức \(\sqrt{3x-1}\)​ có nghĩa thì \(3x-1\ge0\Leftrightarrow3x\ge1\Leftrightarrow x\ge\dfrac{1}{3}\)

2) Ta có \(x^2\ge0\Leftrightarrow x^2+3\ge3>0\)

Vậy với mọi x thì biểu thức \(\sqrt{x^2+3}\) có nghĩa

3) Để biểu thức \(\sqrt{5-2x}\)​ có nghĩa thì \(5-2x\ge0\Leftrightarrow2x\le5\Leftrightarrow x\le\dfrac{5}{2}\)

4) Để biểu thức ​\(\sqrt{x^2-2}\) có nghĩa thì \(x^2-2\ge0\Leftrightarrow x^2\ge2\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge\sqrt{2}\\x\le-\sqrt{2}\end{matrix}\right.\)

5) Để biểu thức \(\dfrac{1}{\sqrt{7x-14}}\)​ có nghĩa thì \(7x-14>0\Leftrightarrow7x>14\Leftrightarrow x>2\)

6) Ta có \(x^2-3x+7=x^2-2x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}>0\Leftrightarrow x^2-3x+7>0\)

Vậy với mọi x thì \(\sqrt{x^2-3x+7}\) luôn có nghĩa

7) Để biểu thức \(\sqrt{2x-1}\)​ có nghĩa thì \(2x-1\ge0\Leftrightarrow2x\ge1\Leftrightarrow x\ge\dfrac{1}{2}\)

8) Để biểu thức ​\(\sqrt{x^2-9}\) có nghĩa thì \(x^2-9\ge0\Leftrightarrow x^2\ge9\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

9) Để biểu thức \(\sqrt{\dfrac{x+3}{7-x}}\)​ có nghĩa thì \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\7-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3\\x< 7\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3\\x>7\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(-3\le x< 7\)

10) Để biểu thức \(\sqrt{6x-1}+\sqrt{x+3}\)​ có nghĩa thì \(\left\{{}\begin{matrix}6x-1\ge0\\x+3\ge0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}6x\ge1\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge\dfrac{1}{6}\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow\)\(x\ge\dfrac{1}{6}\)

bài 1: giải các hệ phương trình 1)\(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)=\(\dfrac{1}{2}\) x+y=9 2) \(\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\) \(\dfrac{x+5}{2}-\dfrac{y+7}{3}=-4\) 3)\(2|x|-y=3\) \(|x|+y=3\) 4)\(2\left(x+y\right)+\sqrt{x+1}=4\) \(\left(x+y\right)-3\sqrt{x+1}=-5\) 5) \(\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\) \(\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\) 6)\(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\) \(\dfrac{2}{x}+\dfrac{4}{2y+1}=2\) 7)...
Đọc tiếp

bài 1: giải các hệ phương trình

1)\(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)=\(\dfrac{1}{2}\)

x+y=9

2) \(\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\)

\(\dfrac{x+5}{2}-\dfrac{y+7}{3}=-4\)

3)\(2|x|-y=3\)

\(|x|+y=3\)

4)\(2\left(x+y\right)+\sqrt{x+1}=4\)

\(\left(x+y\right)-3\sqrt{x+1}=-5\)

5) \(\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\)

\(\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\)

6)\(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\)

\(\dfrac{2}{x}+\dfrac{4}{2y+1}=2\)

7) \(\dfrac{1}{x}+\dfrac{1}{y}=2\)

\(\dfrac{3}{x}-\dfrac{1}{y}=2\)

8)\(\dfrac{1}{x+2}+\dfrac{3}{2y-1}=4\)

\(\dfrac{4}{x+2}-\dfrac{1}{2y-1}=3\)

9)\(\dfrac{4}{x+y} +\dfrac{1}{y-1}=5\)

\(\dfrac{1}{x+y}-\dfrac{2}{y-1}=-1\)

10)\(\dfrac{7}{\sqrt{2x+3}}-\dfrac{4}{\sqrt{3}-y}=\dfrac{5}{3}\)

\(\dfrac{5}{\sqrt{2x+3}}+\dfrac{3}{\sqrt{3-y}}=\dfrac{13}{6}\)

11)\(\dfrac{3x}{x-1}-\dfrac{2}{y+2}=4\)

\(\dfrac{2x}{x-1}+\dfrac{1}{y+2}=5\)

12) \(\dfrac{7}{\sqrt{x}-7}-\dfrac{4}{\sqrt{y}+6}=\dfrac{5}{3}\)

\(\dfrac{5}{\sqrt{x}-7}+\dfrac{3}{\sqrt{y}+6}2\dfrac{1}{6}\)

13) \(3\sqrt{x-1}+2\sqrt{y}=13\)

\(2\sqrt{x-1}-\sqrt{y}=4\)

14) 6x + 6y = 5xy

\(\dfrac{4}{x}-\dfrac{3}{y}=1\)

1
24 tháng 2 2018

mọi người giúp mk với gianroi

câu 6 sai nha

sửa : \(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\)

\(\dfrac{2}{x}+\dfrac{4}{2y+1}=3\)