
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3

a) \(A=x^2-3x-x+3+11\)
\(=\left(x^2-4x+4\right)+10\)
\(=\left(x-2\right)^2+10\ge10\forall x\in R\)
Dấu "=" xảy ra<=> \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
b) \(B=5-4x^2+4x\)
\(=-\left(4x^2-4x+1\right)+6\)
\(=-\left(2x-1\right)^2+6\le6\forall x\in R\)
Dấu "=" xảy ra<=> \(-\left(2x-1\right)^2=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
c) \(C=\left(x^2-3x+1\right)\left(x^2-3x-1\right)\)
\(=\left(x^2-3x\right)^2-1\ge-1\forall x\in R\)
Dấu "=" xảy ra<=>\(\left(x^2-3x\right)^2=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\)

\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)
suy ra Amin=-1
\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10

a/ \(8x-x^2\)
\(=-\left(x^2-8x\right)\)
\(=-\left(x^2-2\cdot4x+16-16\right)\)
\(=-\left(x-4\right)^2+16\)
Có \(\left(x-4\right)^2\ge0\)
\(\Rightarrow-\left(x-4\right)^2\le0\)
\(\Rightarrow-\left(x-4\right)^2+16\le16\)
\(\Rightarrow GTLN\left(8x-x^2\right)=16\)
với \(\left(x-4\right)^2=0;x=4\)
b/ \(\frac{3}{x^2-4x+10}\)
Xét mẫu số ta có : \(x^2-4x+10\)
\(=x^2-2\cdot2x+4-4+10\)
\(=\left(x-2\right)^2-4+10\)
\(=\left(x-2\right)^2+6\)
Có \(\left(x-2\right)^2\ge0\)\(\Rightarrow\left(x-2\right)^2+6\ge6\)
\(\Rightarrow\frac{3}{\left(x-2\right)^2+6}\le\frac{3}{6}\)
\(\Rightarrow GTLN\frac{3}{x^2-4x+10}=\frac{3}{6}\)
với \(\left(x-2\right)^2=0;x=2\)
c/ cái này f GTNN chứ bạn, mik thấy kq ra dương , bạn ktra giúp mik nha.
\(x^2+y^2\)
Có \(x+y=2\Rightarrow x=2-y\)
\(x^2+y^2\)
\(=\left(2-y\right)^2+y^2\)
\(=4-4y+y^2+y^2\)
\(=4-4y+y^2\)
\(=2y^2-4y+4\)
\(=2\left(y^2-2y+2\right)\)
\(=2\left(y^2-2\cdot1y+1+1\right)\)
\(=2\left[\left(y-1\right)^2+1\right]\)
\(=2\left(y-1\right)^2+2\)
Có \(\left(y-1\right)^2\ge0\Rightarrow\left(y-1\right)^2+2\ge2\)
\(\Rightarrow GTNN2\left(y-1\right)^2+2\ge2\)
với \(\left(y-1\right)^2=0;y=1\)
\(\Rightarrow GTNN\left(x^2+y^2\right)\ge2\)với\(x=1;y=1\)

a)
\(A=x^2-4x+5=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1\)
Vậy \(MinA=1\Leftrightarrow \left(x-2\right)^2=0\Leftrightarrow x=2\)
\(B=x^2-x=\left(x^2-x+\frac{1}{4}\right)-\frac{1}{4}=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy \(MinB=-\frac{1}{4}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x=\frac{1}{2}\)
\(C=-\left(x+1\right)^2+3\le3\)
Vậy \(MaxC=3\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x=-1\)
a, A= (x-2)^2 +1 >= 1
Dấu "=" xảy ra <=> x-2=0 <=>x=2
Vậy Min A= 1<=> x=2
b, B= (x-1/2)^2 - 1/4>=-1/4
Dấu "=" xảy ra <=> x-1/2 = 0<=> x= 1/2
Vậy Min B= -1/4 <=> x= 1/2
c, C = 3-(x+1)^2 <=3
Dấu "=" xảy ra <=> x+1 = 0 <=> x=-1
Vậy Max C = 3 <=> x= -1

a. \(A=4x-x^2+3=7-\left(x^2-4x\right)+4=7-\left(x-2\right)^2\le7\)
b.\(B=x-x^2=\frac{1}{4}-\left(x^2-x+\frac{1}{4}\right)=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\)
c.\(C=2x-2x^2-5=-\frac{9}{2}-2\left(x^2-x+\frac{1}{4}\right)=-\frac{9}{2}-2\left(x-\frac{1}{2}\right)^2\le-\frac{9}{2}\)
a) \(B=4x-x^2+3\)
\(B=-\left(x^2-4x-3\right)\)
\(B=-\left(x^2-2\cdot x\cdot2+2^2-7\right)\)
\(B=-\left[\left(x-2\right)^2-7\right]\)
\(B=7-\left(x-2\right)^2\le7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy Bmin = 7 <=> x = 2
b) \(C=x-x^2\)
\(C=-\left(x^2-x\right)\)
\(C=-\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)\)
\(C=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(C=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Vậy Cmax = 1/4 <=> x = 1/2