![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)
dau '=' xay ra khi \(x=\frac{3}{2}\)
\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)
dau '=' xay ra khi \(x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{1}{x^2+4x+5}=\frac{1}{\left(x+2\right)^2+1}\)
Vì: \(\left(x+2\right)^2\ge0\)
=> \(\left(x+2\right)^2+1\ge1\)
=> \(\frac{1}{\left(x+2\right)^2+1}\le\frac{1}{1}=1\)
Vậy GTLN của A là 1 khi x=-2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M=\frac{x^2+2x+3}{x^2+2}=\frac{2x^2+4-x^2+2x-1}{x^2+2}=\frac{2\left(x^2+2\right)-\left(x-1\right)^2}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)
\(N=\frac{4x}{x^2+2}=\frac{-\sqrt{2}x^2-2\sqrt{2}+\sqrt{2}x^2+4x+2\sqrt{2}}{x^2+2}\)
\(=\frac{-\sqrt{2}\left(x^2+2\right)+\sqrt{2}\left(x^2+2\sqrt{2}x+2\right)}{x^2+2}=-\sqrt{2}+\frac{\sqrt{2}\left(x+\sqrt{2}\right)^2}{x^2+2}\ge-\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{3}{4x^2-4x+5}\)
\(=\frac{3}{4x^2-4x+1+4}\)
\(=\frac{3}{\left(2x-1\right)^2+4}\)
\(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\left(2x-1\right)^2+4\ge4\)
\(\Rightarrow\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)
\(MaxA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
Đặt \(A=\frac{3}{4x^2-4x+5}\)
Biến đổi : \(4x^2-4x+5\)
\(=\left[\left(2x\right)^2-2.2x.1+1^2\right]+4\)
\(=\left(2x-1\right)^2+4\)
Ta có : \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\left(2x-1\right)^2+4\ge4\)
\(\Rightarrow\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)
\(\Rightarrow A\le\frac{3}{4}\)
Dấu " = " xảy ra khi và chỉ khi \(2x-1=0\)
\(2x=1\)
\(x=\frac{1}{2}\)
Vậy \(Max_A=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ x thuộc R
ta thấy x^2 +1 >=0
=> \(\frac{3-4x}{x^2+1}\)>=0
dấu bằng xảy ra khi và chỉa khi
3 -4x =0
=> 4x = 3
=> x = \(\frac{3}{4}\)
vậy MINA = 0 tại x = \(\frac{3}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
P = x^2 + 5y^2 + 2xy – 4x – 8y + 2015
= (x^2 + y^2 + 2xy) – 4(x + y) + 4 + 4y^2 – 4y + 1 + 2010
= (x + y – 2)^2 + (2y – 1)^2 + 2010 ≥ 2010
=> Giá trị nhỏ nhất của P = 2010 khi x = \(\frac{3}{2}\); y = \(\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^2+5y^2+2xy-4x-8y+2015\)
\(=x^2+2xy+y^2+4y^2-4x-8y+2015\)
\(=\left(x+y\right)^2-4\left(x+y\right)+4+4y^2-4y+2011\)
\(=\left(x+y\right)^2-2\cdot\left(x+y\right)\cdot2+2^2+\left(2y\right)^2-2\cdot2y\cdot1+1^2+2010\)
\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-2=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)
Vậy.....
b) \(\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)
\(=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)
\(=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)
\(=\frac{3}{x^2+1}\le\frac{3}{1}=3\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy....
A=\(\frac{3}{x^2+4x+5}\)
\(\Rightarrow\)A lớn nhất thì \(x^2+4x+5\)nhỏ nhất =1
Vậy GTLN của A= 3 với x =-2.