\(A=\frac{3}{x^2+4x+5}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

A=\(\frac{3}{x^2+4x+5}\)

\(\Rightarrow\)A lớn nhất thì \(x^2+4x+5\)nhỏ nhất =1 

Vậy GTLN của A= 3 với x =-2.

10 tháng 2 2019

\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)

dau '=' xay ra khi \(x=\frac{3}{2}\)

\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)

dau '=' xay ra khi \(x=1\)

7 tháng 8 2016

\(A=\frac{1}{x^2+4x+5}=\frac{1}{\left(x+2\right)^2+1}\)

Vì: \(\left(x+2\right)^2\ge0\)

=> \(\left(x+2\right)^2+1\ge1\)

=> \(\frac{1}{\left(x+2\right)^2+1}\le\frac{1}{1}=1\)

Vậy GTLN của A là 1 khi x=-2

18 tháng 8 2017

\(M=\frac{x^2+2x+3}{x^2+2}=\frac{2x^2+4-x^2+2x-1}{x^2+2}=\frac{2\left(x^2+2\right)-\left(x-1\right)^2}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)

\(N=\frac{4x}{x^2+2}=\frac{-\sqrt{2}x^2-2\sqrt{2}+\sqrt{2}x^2+4x+2\sqrt{2}}{x^2+2}\)

\(=\frac{-\sqrt{2}\left(x^2+2\right)+\sqrt{2}\left(x^2+2\sqrt{2}x+2\right)}{x^2+2}=-\sqrt{2}+\frac{\sqrt{2}\left(x+\sqrt{2}\right)^2}{x^2+2}\ge-\sqrt{2}\)

15 tháng 11 2016

\(A=\frac{3}{4x^2-4x+5}\)

\(=\frac{3}{4x^2-4x+1+4}\)

\(=\frac{3}{\left(2x-1\right)^2+4}\)

\(\left(2x-1\right)^2\ge0\)

\(\Rightarrow\left(2x-1\right)^2+4\ge4\)

\(\Rightarrow\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)

\(MaxA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

15 tháng 11 2016

Đặt \(A=\frac{3}{4x^2-4x+5}\)

Biến đổi : \(4x^2-4x+5\)

\(=\left[\left(2x\right)^2-2.2x.1+1^2\right]+4\)

\(=\left(2x-1\right)^2+4\)

Ta có : \(\left(2x-1\right)^2\ge0\)

\(\Rightarrow\left(2x-1\right)^2+4\ge4\)

\(\Rightarrow\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)

\(\Rightarrow A\le\frac{3}{4}\)

Dấu " = " xảy ra khi và chỉ khi \(2x-1=0\)

\(2x=1\)

\(x=\frac{1}{2}\)

Vậy \(Max_A=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

 

 

26 tháng 12 2016

ĐKXĐ x thuộc R

ta thấy x^2 +1 >=0

=> \(\frac{3-4x}{x^2+1}\)>=0

dấu bằng xảy ra khi và chỉa khi

3 -4x =0

=> 4x = 3

=> x = \(\frac{3}{4}\)

vậy MIN= 0 tại x = \(\frac{3}{4}\)

a)

P = x^2 + 5y^2 + 2xy – 4x – 8y + 2015

= (x^2 + y^2 + 2xy) – 4(x + y) + 4 + 4y^2 – 4y + 1 + 2010

= (x + y – 2)^2 + (2y – 1)^2 + 2010 ≥ 2010

=> Giá trị nhỏ nhất của P = 2010 khi x = \(\frac{3}{2}\); y = \(\frac{1}{2}\)

30 tháng 1 2019

a) \(x^2+5y^2+2xy-4x-8y+2015\)

\(=x^2+2xy+y^2+4y^2-4x-8y+2015\)

\(=\left(x+y\right)^2-4\left(x+y\right)+4+4y^2-4y+2011\)

\(=\left(x+y\right)^2-2\cdot\left(x+y\right)\cdot2+2^2+\left(2y\right)^2-2\cdot2y\cdot1+1^2+2010\)

\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-2=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)

Vậy.....

30 tháng 1 2019

b) \(\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)

\(=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)

\(=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)

\(=\frac{3}{x^2+1}\le\frac{3}{1}=3\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy....