Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ta có
\(\sqrt{x-2}\ge0\)với mọi x
=>A=1+\(\sqrt{x-2}\ge1\)
dấu "=" xảy ra khi:
x-2=0
<=>x=2
Vậy GTNN của A là 1 tại x=2
2)
ta có :
\(-\sqrt{2x-1}\le0\)
=>B=5-\(\sqrt{2x-1}\le5\)
Dấu "=" xảy ra khi:
2x-1=0
<=>2x=1
<=>x=1/2
Vậy GTLN của B là 5 tại x=1/2
\(\frac{x+5}{\sqrt{x}+1}=\frac{\left(x-1\right)+6}{\sqrt{x}+1}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+6}{\sqrt{x}+1}=\sqrt{x}-1+\frac{6}{\sqrt{x}+1}\)
\(=\sqrt{x}+1+\frac{6}{\sqrt{x}+1}-2\ge2\sqrt{\left(\sqrt{x}+1\right)\frac{6}{\sqrt{x}+1}}-2=2\sqrt{6}-2\)(Cauchy)
`A=(1/(x-sqrtx)+1/(sqrtx-1)):(sqrtx+1)/(sqrtx-1)^2`
`=((sqrtx+1)/(x-sqrtx)).(sqrtx-1)^2/(sqrtx+1)`
`=(sqrtx-1)^2/(x-sqrtx)`
`=(sqrtx-1)/sqrtx`
Ta có : \(A=\sqrt{x-5}+\sqrt{23-x}\)
\(\Rightarrow A^2=18+2\sqrt{\left(x-5\right)\left(23-x\right)}\)
Áp dụng bđt Cauchy : \(2\sqrt{\left(x-5\right)\left(23-x\right)}\le x-5+23-x=18\)
Suy ra : \(A^2\le36\Rightarrow A\le6\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}5\le x\le23\\x-5=23-x\end{cases}}\)\(\Leftrightarrow x=9\)
Vậy A đạt giá trị lớn nhất bằng 6 tại x = 14
Câu 1:
A = (3 - y)(4 - x)(2y + 3x)
6A = (6 - 2y)(12 - 3x)(2y + 3x)
Ta có: \(\hept{\begin{cases}0\le x\le4\\0\le y\le3\end{cases}\Leftrightarrow\hept{\begin{cases}4-x\ge0\\3-y\ge0\\2y+3x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}12-3x\ge0\\6-2y\ge0\\2y+3x\ge0\end{cases}}}\)
Áp dụng BĐT cô-si ta được:
\(\left(12-3x\right)+\left(6-2y\right)+\left(2y+3x\right)\ge3.\sqrt[3]{\left(12-3x\right)\left(6-2y\right)\left(2y+3x\right)} \)
\(\Leftrightarrow3.\sqrt[3]{6A}\le18\Leftrightarrow A\le36\)
Dấu = xảy ra khi:
12 - 3x = 6 - 2y = 2y + 3x
=> \(\hept{\begin{cases}3x+4y=6\\6x+2y=12\end{cases}\Rightarrow\hept{\begin{cases}x=2\left(n\right)\\y=0\left(n\right)\end{cases}}}\)
Vậy.....