![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)
\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)
Min A=-2/3 khi x=2
\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)
Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)
\(\Rightarrow C\le2\)
Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)
Vậy Min C = 2 kjhi x = -2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(Q=-2x^2+10x=\left(-2x^2+10x-\frac{25}{2}\right)+\frac{25}{2}=-2\left(x-\frac{5}{2}\right)^2+\frac{25}{2}\le\frac{25}{2}\)
Dấu = xảy ra khi \(x=\frac{5}{2}\)
\(N=-5x^2+6x+3=\left(-5x^2+6x-\frac{9}{5}\right)+\frac{9}{5}+3=-\left(\sqrt{5}x-\frac{3}{\sqrt{5}}\right)^2+\frac{24}{5}\le\frac{24}{5}\)
Dấu = xảy ra khi \(x=\frac{3}{5}\)
\(P=4-x^2+2x=\left(-x^2+2x-1\right)+5=-\left(x-1\right)^2+5\le5\)
Dấu = xảy ra khi \(x=1\)
\(H=-9x^2+6x-2=\left(-9x^2+6x-1\right)-1=-\left(3x-1\right)^2-1\le-1\)
Dấu = xảy ra khi \(x=\frac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{6x^2+12x+27}{3\left(x^2+2x+4\right)}=\frac{7\left(x^2+2x+4\right)-x^2-2x-1}{3\left(x^2+2x+4\right)}=\frac{7}{3}-\frac{\left(x+1\right)^2}{3\left(x+1\right)^2+9}\le\frac{7}{3}\)
\(\Rightarrow A_{max}=\frac{7}{3}\) khi \(x+1=0\Leftrightarrow x=-1\)
\(B=\frac{x^2-x+1}{x^2+x+1}=\frac{3\left(x^2+x+1\right)-2x^2-4x-2}{x^2+x+1}=3-\frac{2\left(x+1\right)^2}{x^2+x+1}=3-\frac{2\left(x+1\right)^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\le3\)
\(\Rightarrow B_{max}=3\) khi \(x+1=0\Rightarrow x=-1\)
\(C=\frac{2x^2-6x+3}{x^2-2x+1}=\frac{3\left(x^2-2x+1\right)+x^2}{x^2-2x+1}=3+\frac{x^2}{\left(x-1\right)^2}\ge3\)
\(C\) chỉ tồn tại min, ko tồn tại max
![](https://rs.olm.vn/images/avt/0.png?1311)
Q=\(-2\left(X^2-2.X.\frac{5}{2}+\frac{25}{4}\right)-\frac{25}{4}\)
Q=\(-2\left(X-\frac{5}{2}\right)^2-2.\frac{-25}{4}\)
Q=\(-2\left(X-\frac{5}{2}\right)^2+\frac{25}{2}\)
=>\(GTLN\) LÀ 25/2 TẠI X=5/2
N=
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=-x^2+6x+1\)
\(=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-6x+9-10\right)\)
\(=-\left[\left(x-3\right)^2-10\right]\)
\(=-\left(x-3\right)^2+10\le10\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy GTLN của A là : \(10\Leftrightarrow x=3\)
\(B=-x^2-4x-2\)
\(=-\left(x^2+4x+2\right)\)
\(=-\left(x^2+4x+4-2\right)\)
\(=-\left[\left(x+2\right)^2-2\right]\)
\(=-\left(x+2\right)^2+2\le2\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy GTLN của B là : \(2\Leftrightarrow x=-2\)
C ) Sai đề
\(D=\left(2-x\right)\left(3x+4\right)\)
\(=6x-3x^2+8-4x\)
\(=-3x^2+2x+8\)
\(=-3\left(x^2-\dfrac{2}{3}x-\dfrac{8}{3}\right)\)
\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}-\dfrac{25}{9}\right)\)
\(=-3\left[\left(x-\dfrac{1}{3}\right)^2-\dfrac{25}{9}\right]\)
\(=-3\left(x-\dfrac{1}{3}\right)^2+\dfrac{25}{3}\le\dfrac{25}{3}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy GTLN của D là : \(\dfrac{25}{3}\Leftrightarrow x=\dfrac{1}{3}\)
\(E=-8x^2+4xy-y^2+3\)
\(=-8x^2+4xy-\dfrac{y^2}{2}-\dfrac{y^2}{2}+3\)
\(=-2\left[4x^2-2xy+\dfrac{y^2}{4}\right]-\dfrac{y^2}{2}+3\)
\(=-2\left(2x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{2}+3\le3\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-\dfrac{y}{2}\right)^2=0\\\dfrac{y^2}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-\dfrac{y}{2}=0\\y^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{y}{2}\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=0\\y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy GTLN của E là : \(3\Leftrightarrow x=y=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)
Vậy Max = 10 <=> x = 3
b) \(-5x^2-4x+1=-5\left(x^2+2.x.\frac{2}{5}+\frac{4}{25}\right)+\frac{4}{5}+1=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\)
Vậy Max = \(\frac{9}{5}\Leftrightarrow x=-\frac{2}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=-x^2+x+1\)
\(\Leftrightarrow A=-\left(x^2-x-1\right)\)
\(\Leftrightarrow A=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{5}{4}\right)\)
\(\Leftrightarrow-A=\left[\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\right]\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\ge\frac{-5}{4}\)hay \(-A\ge\frac{-5}{4}\)
\(\Rightarrow A\le\frac{5}{4}\)
Vậy \(A_{max}=\frac{5}{4}\)(Dấu "="\(\Leftrightarrow x=\frac{1}{2}\))
\(D=4x^2+6x+1\)
\(D=\left(2x\right)^2+2.2x.\frac{3}{2}+\frac{9}{4}+1-\frac{9}{4}\)
\(D=\left(2x+\frac{9}{4}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Dấu = xảy ra khi :
\(2x+\frac{9}{4}=0\Rightarrow x=-\frac{9}{8}\)
Vậy Dmin = - 5/ 4 tại x = -9/8