Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(P=f\left(x\right)=-3x^2-x+4,\left(a=-3,b=-1,c=4\right)\)có đồ thị là 1 Parapol có bề lõm hướng xuống vì \(a< 0\)
\(\Rightarrow P\) đạt GTLN tại \(x=-\frac{b}{2a}=-\frac{-1}{2.\left(-3\right)}=-\frac{1}{6}\)
\(\Rightarrow maxP=f\left(-\frac{1}{6}\right)=-3\left(-\frac{1}{6}\right)^2-\left(-\frac{1}{6}\right)+4=\frac{49}{12}\).
Vì \(-1\le-\frac{1}{6}\le3\) nên P sẽ tăng khi \(-1\le x< -\frac{1}{6}\) và P sẽ giảm khi \(-\frac{1}{6}< x\le3\)
\(f\left(-1\right)=-3\left(-1\right)^2-\left(-1\right)+4=2\)
\(f\left(3\right)=-3\left(3\right)^2-\left(3\right)+4=-26\)
\(\Rightarrow minP=f\left(3\right)=-26\)
Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
Áp dụng BĐT Bu-nhi-a-cốp-xki ta có:
\(y^2=\left(3\sqrt{x-1}+4.\sqrt{5-x}\right)^2\le\left(3^2+4^2\right)\left(x-1+5-x\right)=100\Rightarrow y\le10\).
Xảy ra đẳng thức khi và chỉ khi \(\frac{3}{4}=\frac{\sqrt{x-1}}{\sqrt{5-x}}\Leftrightarrow\frac{x-1}{5-x}=\frac{9}{16}\Leftrightarrow16x-16=45-9x\Leftrightarrow x=2,44\).
vậy max y = 10 khi và chỉ khi x = 2,44
\(A^2=\left(2\sqrt{x-4}+\sqrt{8-x}\right)^2\le\left(2^2+1^2\right)\left(x-4+8-x\right)=20..\)
\(A\le2\sqrt{5}..\)
+) Ta có:
\(P=-3x^2-x+4=-\left(3x^2+x+\dfrac{3}{36}\right)+\dfrac{49}{12}\)
\(=-\left(\sqrt{3}\cdot x+\dfrac{\sqrt{3}}{6}\right)^2+\dfrac{49}{12}\)
Vì: \(-\left(\sqrt{3}\cdot x+\dfrac{\sqrt{3}}{6}\right)^2\le0\forall x\Rightarrow-\left(\sqrt{3}\cdot x+\dfrac{\sqrt{3}}{6}\right)+\dfrac{49}{12}\le\dfrac{49}{12}\)
Dấu ''='' xảy ra khi \(\sqrt{3}\cdot x+\dfrac{\sqrt{3}}{6}=0\Leftrightarrow x=-\dfrac{1}{6}\)
Vậy \(MAX_P=\dfrac{49}{12}\Leftrightarrow x=-\dfrac{1}{6}\)