\(\frac{2x-3}{x-3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

\(B=\frac{x^2+2x+3}{x^2+3}=1+\frac{2x}{x^2+3}\le1+\frac{2x}{2x\sqrt{3}}=\frac{\sqrt{3}+1}{\sqrt{3}}\)

Dấu bằng xảy ra khi và chỉ khi \(x^2+3=2x\sqrt{3}\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\Leftrightarrow x=\sqrt{3}\)

\(B=\frac{x^2+2x+3}{x^2+3}=1+\frac{2x}{x^2+3}\ge1+\frac{-\frac{x^2+3}{\sqrt{3}}}{x^2+3}=1-\frac{1}{\sqrt{3}}=\frac{\sqrt{3}-1}{\sqrt{3}}\)

Dấu bằng xảy ra khi và chỉ khi \(2x=-\frac{x^2+3}{\sqrt{3}}\Leftrightarrow2x\sqrt{3}=-\left(x^2+3\right)\Leftrightarrow\left(x+\sqrt{3}\right)^2=0\Leftrightarrow x=-\sqrt{3}\)

6 tháng 8 2016

Có bạn nào có cách giải dễ hiểu hơn không? Giúp mình với!!!

21 tháng 11 2017

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

21 tháng 11 2017

tiếp đi bạn 

2 tháng 8 2018

a) Vì : \(\left(x+1\right)^2\ge0\forall x\)

             \(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)

Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)

Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)

Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)

29 tháng 1 2019

b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Vậy....

3 tháng 6 2019

Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath

eM THAM khảo nhé!

18 tháng 10 2019

a) Ta có: 3|x - 14| \(\ge\)\(\forall\)x

=> 3|x - 14| + 4 \(\ge\)\(\forall\)x

=> \(\frac{6}{3\left|x-14\right|+4}\le\frac{3}{2}\forall x\)

Dấu "=" xảy ra <=> x - 14 = 0 <=> x = 14

Vậy MaxA = 3/2 <=> x = 14

8 tháng 11 2020

b) Mình có: |2x + 6| = \(\orbr{\begin{cases}2x+6\\-2x-6\end{cases}}\)\(\Rightarrow\)BMin = - 2x- 6  + 2 + 2x = -4 khi x \(\le\)-3

21 tháng 9 2016

Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)

1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :

\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)

\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :

\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)

2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :

\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)

\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)

Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)

Giúp mình nhanh nhé, mai cô kt r

Ai bik ko trả lời với ạ