\(x+y+z+xy+yz+xz\) biết x^2 + y^2 + z^2 = 3 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2015

+) Tìm GTNN

Đặt t = x + y + z 

=> t2 = (x + y+ z)= x+ y+ z+ 2(xy + yz + zx)  = 3 + 2(xy + yz+ zx) => xy + yz + zx = (t2 - 3)/2

Khi đó, A = t + \(\frac{t^2-3}{2}\) = \(\frac{t^2+2t-3}{2}=\frac{\left(t+1\right)^2-4}{2}\ge\frac{0-4}{2}=-2\)

=> Min A = -2 

Dấu "=" xảy ra khi t = - 1 <=> x + y + z = - 1. kết hợp x2 + y+ z= 3 chọn x = 1;y = -1; z = -1

Vậy....

 

16 tháng 10 2015

tìm GTLN nè:

ab+bc+ca\(\le\)(a+b+c)^2/3

mặt khác :

(a+b+c)^2\(\le\)3(a^2+b^2+c^2)=9

=> A=<3+3=6 khi a=b=c=1

2 tháng 2 2020

Tìm max:

Áp đụng bất đẳng thức AM-GM ta có:

\(\left(x+y\right)+z\le\frac{\left(x+y\right)^2+1}{2}+\frac{z^2+1}{2}=\frac{x^2+y^2+z^2+2xy+2}{2}=2+xy\)

Chứng minh tương tự ta có: \(2+xz\ge x+y+z;2+yz\ge x+y+z\)

Từ trên ta lại có: \(P=\frac{x}{2+yz}+\frac{y}{2+zx}+\frac{z}{2+xy}\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=1\\z=0\end{cases}}\)

\(\Rightarrow Max_P=1\)

Tìm Min

Áp BĐT Cauchy - Schwaz ta có:

\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)+3xyz}\left(1\right)\)

Đặt \(t=x+y+z\left(\sqrt{2}\le t\le\sqrt{6}\right)\)

Mặt khác ta có: \(9xyz\le\left(x+y+z\right)\left(xy+yz+xz\right)=\frac{t\left(t^2-2\right)}{2}\) 

Kết hợp với \(\left(1\right)\Rightarrow P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)+3xyz}\ge\frac{6t}{t^2+10}\) Luôn đúng với \(\sqrt{2}\le t\le\sqrt{6}\)

Dấu đẳng thức xảy ra chẳng hạn khi \(\hept{\begin{cases}x=\sqrt{2}\\y=z=0\end{cases}}\)

\(\Rightarrow Min_P=\frac{\sqrt{2}}{2}\)

Vậy ...........

7 tháng 2 2020

Bạn Băng Băng ơi, BD9T AM - GM là bất đẳng thức Cô - si đúng không bạn ?

29 tháng 7 2017

Ta có: \(\sqrt{x^2+xy+y^2}=\sqrt{x^2+xy+\frac{y^2}{4}+\frac{3y^2}{4}}=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}\)

Tương tự ta viết lại A và áp dụng BĐT Mipcopxki :

\(A=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}+\sqrt{\left(y+\frac{z}{2}\right)^2+\frac{3z^2}{4}}+\sqrt{\left(z+\frac{x}{2}\right)^2+\frac{3x^2}{4}}\)

\(=\sqrt{\left(x+\frac{y}{2}\right)^2+\left(\frac{\sqrt{3}y}{2}\right)^2}+\sqrt{\left(y+\frac{z}{2}\right)^2+\left(\frac{\sqrt{3}z}{2}\right)^2}+\sqrt{\left(z+\frac{x}{2}\right)^2+\left(\frac{\sqrt{3}x}{2}\right)^2}\)

\(\ge\sqrt{\left(\frac{3\left(x+y+z\right)}{2}\right)^2+\left(\frac{\sqrt{3}\left(x+y+z\right)}{2}\right)^2}\)

\(\ge\sqrt{\left(\frac{3\cdot3}{2}\right)^2+\left(\frac{\sqrt{3}\cdot3}{2}\right)^2}=\sqrt{27}\)

Xảy ra khi x=y=z=1

ta có:

\(S\ge\frac{x^3}{x^2+y^2+\frac{x^2+y^2}{2}}+\frac{y^3}{y^2+z^2+\frac{y^2+z^2}{2}}+\frac{z^3}{z^2+x^2+\frac{z^2+x^2}{2}}\)

\(\Rightarrow S\ge\frac{2x^3}{3\left(x^2+y^2\right)}+\frac{2y^3}{3\left(y^2+z^2\right)}+\frac{2z^3}{3\left(z^2+x^2\right)}\Rightarrow\frac{3}{2}S\ge P=\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\)

\(\Rightarrow P=x-\frac{xy^2}{x^2+y^2}+y-\frac{yz^2}{y^2+z^2}+z-\frac{zx^2}{z^2+x^2}\ge\left(x+y+z\right)-\left(\frac{xy^2}{2xy}+\frac{yz^2}{2yz}+\frac{zx^2}{2xz}\right)\)

\(=\left(x+y+z\right)-\frac{1}{2}\left(x+y+z\right)=\frac{9}{2}\)

\(\Rightarrow\frac{3}{2}S\ge\frac{9}{2}\Rightarrow S\ge3\)

Vậy Min S=3 khi x=y=z=3

23 tháng 9 2017

hok lp 6 000000000000 biet toan lp 9 dau ma lm , tk di , giai cho

17 tháng 9 2018

\(P=\frac{1}{1+xy}+\frac{1}{1+xz}+\frac{1}{1+yz}\ge\frac{9}{3+xy+xz+yz}\)

Lại có :\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow xy+yz+zx\le x^2+y^2+z^2\le3\)

\(\Rightarrow P\ge\frac{9}{3+3}=1.5\)

Dấu bằng xảy ra khi x=y=z=1

31 tháng 1 2017

Áp dụng BĐT Cauchy cho 2 bộ số thực không âm:

\(\Rightarrow\left\{\begin{matrix}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{matrix}\right.\)

Cộng theo từng vế:

\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}\)

\(\Rightarrow1\le\frac{2\left(x+y+z\right)}{2}\)

\(\Rightarrow1\le x+y+z\)

\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\) ( 1 )

Ta có: \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

Áp dụng bất đẳng thức cộng mẫu số:

\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{x+y+z}{2}\) ( 2 )

Từ điều ( 1 ) và ( 2 )

\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

\(\Rightarrow\frac{1}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

Vậy GTNN của \(A=\frac{1}{2}\)

Dấu " = " xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

13 tháng 3 2019

a, Sửa đề \(x+y+z\le2+xy\)

Áp dụng bđt Cô-si có : 

\(\left(x+y\right)+z\le\frac{\left(x+y\right)^2+1}{2}+\frac{z^2+1}{2}=\frac{x^2+2xy+y^2+1+z^2+1}{2}\)

                                                                                   \(=\frac{4+2xy}{2}\)

                                                                                    \(=2+xy\)

Dấu "=" khi x = 0 ; y = 1 ; z = 1

b,C/m tương tự câu a có \(x+y+z\le2+yz\)

                                        \(x+y+z\le2zx\)

Ta có : \(P=\frac{x}{2+yz}+\frac{y}{2+zx}+\frac{z}{2+xy}\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)

                                                                                  \(=\frac{x+y+z}{x+y+z}=1\)

Dấu "=" khi x = 0 ; y = 1 ; z  = 1