![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn đặt ĐKXĐ và rút gọn P đi\(\sqrt{x}-x=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4},\forall x\ne1\)
\(\Rightarrow Maxp=\frac{1}{4}\Leftrightarrow dấu=xảyra\)
\(\Leftrightarrow x=\frac{1}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
ĐK: $x\geq 0; x\neq 1$
$P=\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{x+2}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}$
$=\frac{1}{\sqrt{x}-1}=-\frac{x+2}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{x-1}{(\sqrt{x}-1)(x+\sqrt{x}+1)}$
$=\frac{x+\sqrt{x}+1-(x+2)-(x-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}$
$=\frac{-\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}=\frac{-\sqrt{x}}{x+\sqrt{x}+1}$
$\Rightarrow Q=\frac{2(x+\sqrt{x}+1)}{-\sqrt{x}}+\sqrt{x}$
$=-\left(\sqrt{x}+\frac{2}{\sqrt{x}}+2\right)$
Dễ thấy $\sqrt{x}+\frac{2}{\sqrt{x}}+2\geq 2\sqrt{2}+2$ theo BĐT Cô-si
$\Rightarrow Q\leq -(2\sqrt{2}+2)$ hay $Q_{\max}=-(2\sqrt{2}+2)$
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có : (\(\sqrt{x}\)- 2 )\(^2\)\(\ge\)0
\(\Leftrightarrow\)x - 4\(\sqrt{x}\)+ 4 \(\ge\)0
\(\Leftrightarrow\)x - 4\(\sqrt{x}\)+ 4 + 8\(\sqrt{x}\) \(\ge\)8\(\sqrt{x}\)
\(\Leftrightarrow\)(\(\sqrt{x}\)+ 2 )\(^2\)\(\ge\)8\(\sqrt{x}\)
\(\Leftrightarrow\)-(\(\sqrt{x}\)+ 2 )\(^2\)\(\le\)-8\(\sqrt{x}\)
\(\Leftrightarrow\)Q \(\le\)\(\frac{-8\sqrt{x}}{\sqrt{x}}\)= ( - 8 )
Dấu '' = '' xaye ra tại x = 4
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Ta có
P = \(\frac{1+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) - \(\frac{2+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) - \(\frac{1+\sqrt{x}}{x+\sqrt{x}+1}\)
= \(\frac{-\sqrt{x}}{1+\sqrt{x}+x}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(P=\dfrac{-1+2\sqrt{x}-x+x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}:\dfrac{2x+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
b: Thay \(x=6-2\sqrt{5}\) vào P, ta được:
\(P=\dfrac{\sqrt{5}-1}{\sqrt{5}-2}=3+\sqrt{5}\)
sửa lại đề \(\frac{\sqrt{x}-1}{\sqrt{x}+2}\)