Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+2ab+b^2=\left(a+b\right)^2\ge0\forall a,b\)
\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\forall a,b\)
\(A^{2n}\ge0\forall A\)
\(-A^{2n}\le0\forall A\)
\(\left|A\right|\ge0\forall A\)
\(-\left|A\right|\le0\forall A\)
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\left|A\right|-\left|B\right|\le\left|A-B\right|\)
1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)
2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.
\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.
$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.
$C$ hiển nhiên đúng, theo định nghĩa.
Do đó áp án đúng là C.
3)
a) \(-\sqrt{x}=(-7)^2=49\)
\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)
Do đó pt vô nghiệm.
b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)
e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)
g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)
\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)
\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)
h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)
f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)
\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)
1)
a) \(\sqrt{x+2}=\dfrac{5}{7}\)
-> x+2 = \(\left(\dfrac{5}{7}\right)^{^2}\)=\(\dfrac{25}{49}\)
-> x = \(\dfrac{25}{49}-2=-\dfrac{73}{49}\)
b) \(\sqrt{x+2}-8=1\)
-> \(\sqrt{x+2}=1+8=9\)
-> \(x+2=9^2=81\)
-> x = 81 -2 = 79
c) 4 - \(\sqrt{x-0,2}=0,5\)
-> \(\sqrt{x-0,2}=4-0,5=3,5\)
-> x - 0,2 = (3,5)2 = 12,25
-> x = 12,25 +0,2 = 12,45
2) a)
Với mọi x thì: \(\sqrt{x+24}\ge0\)
=> \(\sqrt{x+24}+\dfrac{4}{7}\ge\dfrac{4}{7}\)
Dấu "=" xảy ra khi : x + 24 = 0 <=> x = -24
Vậy MinA = \(\dfrac{4}{7}\) khi x = -24
1. a)\(2\&\sqrt{5}\)
\(2=\sqrt{4}\)
=> \(2< \sqrt{5}\)
b)\(5\&\sqrt{23}\)
\(5=\sqrt{25}\)
=> \(5>\sqrt{23}\)
c) \(\sqrt{23}+\sqrt{13}\&\sqrt{83}\)
\(\left(\sqrt{23}+\sqrt{13}\right)^2=36+2\sqrt{229}\)
\(\left(\sqrt{83}\right)^2=83\)
\(\Rightarrow36+2\sqrt{299}< 83\)
=> \(\sqrt{23}+\sqrt{13}< \sqrt{83}\)
2. a) \(\sqrt{x}=5;x\ge0\)
=> x = 25
b) \(3\sqrt{x}=6;x\ge0\)
=> x = 4
c) trùng
d) \(3-\sqrt{3+1}=1\)
\(3-\sqrt{3+1}=3-2=1\)
1)
a)\(2=\sqrt{4}< \sqrt{5}\)
b) \(5=\sqrt{25}>\sqrt{23}\)
c) \(\sqrt{83}>\sqrt{81}=9\)
\(\left\{{}\begin{matrix}\sqrt{23}< \sqrt{25}=5\\\sqrt{13}< \sqrt{16}=4\end{matrix}\right.\)
\(\sqrt{23}+\sqrt{13}< 4+5=9\)
Vậy \(\sqrt{23}+\sqrt{13}< \sqrt{83}\)
2) Ta có:
\(\sqrt{x}=5\Rightarrow x=25\)
\(3\sqrt{x}=6\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(3-\sqrt{3+1}=1\)
Nên:
\(3-2=1\)(luôn đúng)
Đề hình như phải là câu a tìm Max b tìm Min và c Tìm max nhé
a,
Ta có:
\(\sqrt{2x+3}\ge0\Rightarrow13-\sqrt{2x+3}\le13\)
MaxA=13 <=> 2x+3=0 => x=-3/2
Vậy...
b,
Ta có:
\(5\sqrt{x^2+25}\ge0\Rightarrow83+5\sqrt{x^2+25}\ge83\)
Min B= 83 <=> x^2+25=0 => x^2=-25
=> Vô nghiệm
c,
Ta có:
\(\sqrt{x^2-36}\ge0\Rightarrow57-\sqrt{x^2-36}\le57\)
Min C= 57 <=> x^2-36=0
=> x^2=36
=>....