Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(A=\frac{x^2+x^2-2x+1}{x^2}=1+\frac{\left(x-1\right)^2}{x^2}\ge1\)
Giá trị nhỏ nhất của A là 1 khi và chỉ khi x-1=0 <=> x=1
b. \(B=\frac{2014x^2+4x^2-4x+1}{x^2}=2014+\frac{\left(2x-1\right)^2}{x^2}\ge2014\)
Giá trị nhỏ nhất của B là 2014 khi và chỉ khi 2x-1=0 <=> x=1/2
\(F=-x^4+x^2-4y^2+2x-4y+2000.\)
\(=-x^4+2x^2-1-x^2+2x-1-4y^2-4y-1+2003\)
\(=-\left(x^2-1\right)^2-\left(x-1\right)^2-\left(2y+1\right)^2+2003\)
\(=-\left(x-1\right)^2\left(x+1\right)^2-\left(x-1\right)^2-\left(2y+1\right)^2+2003\)
\(\Rightarrow F_{min}=2003\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(2y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}}\)
Vậy \(F_{min}=2003\Leftrightarrow x=1;y=-\frac{1}{2}\)
\(C=x^2-2x+2018=\left(x^2-2x+1\right)+2017=\left(x-1\right)^2+2017\ge2017.\)
Dấu "='' xảy ra khi x=1
\(C=x^2-2x+2018=x^2-2x+1+2017=\left(x-1\right)^2+2017\)
Vì: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+2017\ge2017\forall x\)
Vậy Min C = 2017
Dấu = xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)
=.= hok tốt!!
a, \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)
Dấu "=" xảy ra <=> x-2=0 <=> x=2
Vậy MinA = -18 khi x=2
b, \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu "=" xảy ra <=> x-1/2=0 <=> x=1/2
Vậy MaxB = 1/4 khi x=1/2
a) \(A=2x^2-8x-10\)
\(=2\left(x^2-4x-5\right)\)
\(=2\left(x^2-2.x.2+2^2-2^2-5\right)\)
\(=2\left[\left(x-2\right)^2-9\right]\)
\(=2\left(x-2\right)^2-18\)
Vì \(2\left(x-2\right)^2\ge0\forall x\)
Nên \(2\left(x-2\right)^2\ge-18\)
Hay \(A\ge-18\)
Vậy gtnn của A là -18 khi \(2\left(x-2\right)^2=0\)
\(x-2=0\)
\(x=2\)
b) \(B=x-x^2\)
\(=-x^2-x\)
\(=-\left(x^2-x\right)\)
\(=-\text{[}x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\text{]}\)
\(=-\text{[}\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\text{]}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
Nên \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x
\)
Vậy gtln của B là \(\frac{1}{4}\)khi \(x-\frac{1}{2}=0\)
\(x=\frac{1}{2}\)
Ta có: A = x2 + 2y2 + 9z2 - 2x + 12y + 6z + 24
A = (x2 - 2x + 1) + 2(y2 + 6y + 9) + (9z2 + 6z + 1) + 4
A = (x - 1)2 + 2(y + 3)2 + (3z + 1)2 + 4 \(\ge\)4 \(\forall\)x;y;z
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\\3z+1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\\z=-\frac{1}{3}\end{cases}}\)
Vậy MinA = 4 <=> x= 1 ; y = -3 và z = -1/3
\(x^2+2y^2+9z^2-2x+12y+6z+24\)
\(=\left(x^2-2x+1\right)+\left(9z^2+6z+1\right)+\left(2y^2+12y+22\right)\)
\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y^2+6y+11\right)\)
\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y^2+6y+9+2\right)\)
\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y+3\right)^2+4\ge4\)
Dấu '' = '' xảy ra khi \(\Leftrightarrow\hept{\begin{cases}x-1=0\\3z+1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\z=-\frac{1}{3}\\y=-3\end{cases}}}\)
Vậy................................
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
Tìm GTNN
Câu 1 :
\(C=2x^2-5x+1\)
\(C=2\left(x^2-\frac{5}{2}x+\frac{1}{2}\right)\)
\(C=2\left(x^2-2\cdot x\cdot\frac{5}{4}+\frac{25}{16}-\frac{17}{16}\right)\)
\(C=2\left[\left(x-\frac{5}{4}\right)^2-\frac{17}{16}\right]\)
\(C=2\left(x-\frac{5}{4}\right)^2-\frac{17}{8}\ge\frac{-17}{8}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{4}=0\Leftrightarrow x=\frac{5}{4}\)
Câu 2 :
\(D=x^2+2x+y^2-8y-4\)
\(D=x^2+2\cdot x\cdot1+1^2+y^2-2\cdot y\cdot4+4^2-21\)
\(D=\left(x+1\right)^2+\left(y-2\right)^2-21\ge-21\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
Tìm GTLN :
Câu 1 :
\(C=-2x^2+2x-1\)
\(C=-2\left(x^2-x+\frac{1}{2}\right)\)
\(C=-2\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)
\(C=-2\left[\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\right]\)
\(C=-2\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\)
\(C=-\frac{1}{2}-2\left(x-\frac{1}{2}\right)^2\le-\frac{1}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Câu 2 :
\(D=-x^2-y^2-x+y-4\)
\(D=-\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)-\left(y^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)-\frac{7}{2}\)
\(D=-\left(x+\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2-\frac{7}{2}\)
\(D=\frac{-7}{2}-\left[\left(x+\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2\right]\le\frac{-7}{2}\forall x;y\)
Dấu "=' xảy ra \(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{2}\end{cases}}}\)
Đặt \(|x-4|=t\)
Khi đó: \(C=t\left(2-t\right)\)
\(=2t-t^2\)
\(=-t^2+2t-1+1\)
\(=-\left(t^2-2t+1\right)+1\)
\(=-\left(t-1\right)^2+1\le1\forall t\)
Dấu "=" xảy ra khi:
\(t-1=0\Rightarrow t=1\Rightarrow|x-4|=1\Rightarrow\orbr{\begin{cases}x-4=1\\x-4=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
Vậy GTLN của C là 1 khi \(\orbr{\begin{cases}x=5\\x=3\end{cases}}\)
Chúc bạn học tốt.
Ta có :
\(K=x^4-2x^2\)
\(=x^4-2x^2+1-1\)
\(=\left(x^2-1\right)^2-1\)
Vì \(\left(x^2-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x^2-1\right)^2-1\ge-1\forall x\)
Dấu " = " xảy ra khi và chỉ khi
\(\left(x^2-1\right)^2=0\)
\(\Leftrightarrow x^2-1=0\)
\(x=\pm1\)
Vậy \(K_{min}=-1\) tại \(x=\pm1\)
\(K=x^4-2x^2\)
\(K=\left(x^2\right)^2-2x^2+1-1\)
\(K=\left(x^2-1\right)^2-1\ge-1\)
Vậy Min K = -1 <=> x = 1 hoặc -1