K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2020

- Đặt \(A=4x^2+4x+5\)

- Ta có: \(A=4x^2+4x+5\)

      \(\Leftrightarrow A=\left(4x^2+4x+1\right)+4\)

      \(\Leftrightarrow A=\left(2x+1\right)^2+4\)

- Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(2x+1\right)^2+4\ge4\forall x\)

        \(\Rightarrow A_{min}=4\)

- Dấu "=" xảy ra khi: \(2x+1=0\)\(\Leftrightarrow\)\(2x=-1\)\(\Leftrightarrow\)\(x=-\frac{1}{2}\left(TM\right)\)

Vậy \(A_{min}=4\)\(\Leftrightarrow\)\(x=-\frac{1}{2}\)

24 tháng 11 2019

a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)

\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)

b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)

\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)

\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)

24 tháng 11 2019

c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1\le-1\)

\(\Rightarrow V\ge\frac{1}{-1}=-1\)

Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)

d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)

\(=-\left(4x^2-8x+4\right)-1\)

\(=-\left(2x-2\right)^2-1\le-1\)

\(\Rightarrow X\ge\frac{2}{-1}=-2\)

Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

25 tháng 7 2019

\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\)

Vậy \(A_{min}=1\Leftrightarrow x=-1\)

25 tháng 7 2019

\(B=x^2+4x=6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2>0\)

Vậy \(B_{min}=2\Leftrightarrow x=-2\)

4 tháng 9 2019

Ta có : \(\left(x^2-y^2\right)^2+4x^2y^2+x^2-2y^2=0\)

\(\Leftrightarrow\left(x^2+y^2\right)^2-2.\left(x^2+y^2\right)+1=1-3x^2\)

\(\Leftrightarrow\left(x^2+y^2-1\right)^2=1-3x^2\le1\forall x\)

\(\Rightarrow\left(x^2+y^2-1\right)\le1\)

\(\Rightarrow-1\le x^2+y^2-1\le1\)

\(\Rightarrow0\le x^2+y^2\le2\)

\(C=x^2+y^2\) min tại \(x=y=0\)

\(C=x^2+y^2\)max tại \(x=0,y=\sqrt{2}\)

26 tháng 12 2019

Ta có: \(x^2+4x+9=\left(x^2+2.x.2+2^2\right)+5\)

                                     \(=\left(x+2\right)^2+5\)

Vì \(\left(x+2\right)^2\ge0\) với mọi x

=> \(\left(x+2\right)^2+5\)\(\ge5\)

hay: \(x^2+4x+9\)\(\ge5\)

Dấu "=" xảy ra <=> x = -2

Vậy: Min \(x^2+4x+9\)= 5 <=> x = -2

26 tháng 12 2019

\(x^2+4x+9=\left(x^2+4x+4\right)+5\)

\(=\left(x+2\right)^2+5\ge5\)

(Dấu "="\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\))

26 tháng 12 2019

Đặt \(A=x^2+4x+9\)

\(\Rightarrow A=x^2+4x+4+5=\left(x+2\right)^2+5\)

Vì \(\left(x+2\right)^2\ge0\forall x\)\(\Rightarrow A\ge5\)

Dấu " = " xảy ra \(\Leftrightarrow x+2=0\)\(\Leftrightarrow x=-2\)

Vậy \(minA=5\Leftrightarrow x=-2\)

29 tháng 12 2019

\(H=x^2+4x+9\)

\(H=x^2+4x+4+5\)

\(H=\left(x+2\right)^2+5\ge5\) vì \(\left(x+2\right)^2\ge0,\forall x\inℝ\)

\(\Rightarrow Min_A=5\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy: \(Min_A=5\Leftrightarrow x=-2\)

mệt rời o 

thông cảm 

hihi

Bài 7 

\(a,A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

GTNN \(A=4\) khi \(\left(x-1\right)^2=0\Rightarrow x=1\)

\(b,B=x^2-x+1\)

\(=\left(x^2-2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(c,C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

Đặt \(x^2+5x=t\)

\(\Rightarrow C=\left(t-6\right)\left(t+6\right)\)

\(=t^2-36\)

\(\left(x^2+5x\right)^2-36\ge36\forall x\)

\(d,D=x^2+5y^2-2xy+4y-3\)

\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)-4\)

\(=\left(x-y\right)^2+\left(2y+1\right)^2-4\ge-4\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2024

1.

a. $A=\frac{x^3-x+2}{x-2}=\frac{x^2(x-2)+2x(x-2)+4(x-2)+10}{x-2}$

$=x^2+2x+4+\frac{10}{x-2}$

Với $x$ nguyên, để $A$ nguyên thì $\frac{10}{x-2}$ là số nguyên. 

Khi $x$ nguyên, điều này xảy ra khi $10\vdots x-2$

$\Rightarrow x-2\in \left\{\pm 1; \pm 2; \pm 5; \pm 10\right\}$

$\Rightarrow x\in \left\{3; 1; 4; 0; 7; -3; 12; -8\right\}$

b.

\(B=\frac{2x^2+5x+8}{2x+1}=\frac{x(2x+1)+3x+8}{2x+1}=x+\frac{3x+8}{2x+1}\)

Với $x$ nguyên, để $B$ nguyên thì $3x+8\vdots 2x+1$

$\Rightarrow 2(3x+8)\vdots 2x+1$
$\Rightarrow 3(2x+1)+13\vdots 2x+1$

$\Rightarrow 13\vdots 2x+1$
$\Rightarrow 2x+1\in \left\{\pm 1; \pm 13\right\}$

$\Rightarrow x\in \left\{0; -1; 6; -7\right\}$

AH
Akai Haruma
Giáo viên
14 tháng 7 2024

Bài 2:

$P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{(2x-1)^3}{(2x-1)^2}=2x-1$
Với $x$ nguyên thì $2x-1$ cũng là số nguyên.

$\Rightarrow P$ nguyên với mọi $x$ nguyên.