Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm GTNN:
a) \(x^2-2x+5\)
\(=x^2-2x+4+1\)
\(=\left(x-2\right)^2+1\ge1\)
vậy GTNN của biểu thức trên =1 khi x=2
a) Ta có : x2 - 2x + 5
= x2 - 2x + 1 + 4
= (x - 1)2 + 4
Mà (x - 1)2 \(\ge0\forall x\)
=> (x - 1)2 + 4 \(\ge4\forall x\)
Vậy GTNN của biểu thức là 4 khi x = 1
Ta có : x2 - 2x + 5
= x2 - 2x + 1 + 4
= (x - 1)2 + 4
Mà (x - 1)2 \(\ge0\forall x\)
Nên (x - 1)2 + 4 \(\ge4\forall x\)
Vậy GTNN của biểu thức là : 4 khi và chỉ khi x = 1
\(P=x^2-2x+5\)
\(P=x^2-2x+1+4\)
\(P=\left(x-1\right)^2+4\ge4\)
=> GTNN của P = 4
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy................
Ta có : x2 + 4x
= x2 + 4x + 4 - 4
= (x + 2)2 - 4
Mà ; (x + 2)2 \(\ge0\forall x\)
Nên : (x + 2)2 - 4 \(\ge-4\forall x\)
Vậy GTNN của biểu thức là -4 khi x = -2
Ta có : 4x2 - 4x - 1
= (2x)2 - 4x + 1 - 1
= (2x - 1)2 - 1
Mà : (2x - 1)2 \(\ge0\forall x\)
Nên : (2x - 1)2 - 1 \(\ge-1\forall x\)
Vậy GTNN của biểu thức là - 1 khi x = \(\frac{1}{2}\)
1) a)
\(P=x^2-2x+5\)
\(=x^2-2x+4+1\)
\(=\left(x+2\right)^2+1\ge1\)
vậy min O =1 khi x= -2
1)
c) K = 4x - x2 - 5
= -x2 + 4x - 4 - 1
= - (x2 - 4x + 4) - 1
= - (x - 2)2 - 1
Vì (x - 2)2 \(\ge0\forall x\)
=> - (x - 2)2 \(\le0\forall x\)
=> -(x - 2)2 \(\le-1\forall x\)
Vậy GTLN của biểu thức là - 1 khi và chi x = 2
\(a,A=x^2+2x-3=\left(x^2+2x+1\right)-4=\left(x+1\right)^2-4\ge-4\)
Dấu = xảy ra \(\Leftrightarrow x=-1\)
Vậy \(Min_A=-4\Leftrightarrow x=-1\)
\(b,B=2x^2-x+1=-\left(x^2-2x+1\right)+2=-\left(x-1\right)^2+2\le2\)
Dấu = xảy ra \(\Leftrightarrow x=1\)
Vậy \(Max_B=2\Leftrightarrow x=1\)
\(c,C=-3x^2+3x+1=-3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{7}{4}=-3\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\le\dfrac{7}{4}\)
Dấu = xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(Max_C=\dfrac{7}{4}\Leftrightarrow x=\dfrac{1}{2}\)
\(d,D=-4x^2+2x+3=-4\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)+\dfrac{13}{4}=-4\left(x-\dfrac{1}{4}\right)^2+\dfrac{13}{4}\le\dfrac{13}{4}\)
\(Max_D=\dfrac{13}{4}\Leftrightarrow x=\dfrac{1}{4}\)
-Tìm GTNN :
a) A= (x2 + 2.x.1 + 12) - 4 = (x + 1)2 - 4
Do (x+1)2 ≥ 0 ⇒ (x+1)2 - 4 ≥ (-4)
⇒ A đạt GTNN ⇔ (x+1)2 = 0 ⇒ x+1= 0 ⇒ x= -1
Vậy A đạt GTNN là -4 ⇔ x= -1
a\(A=x^2-3x+5\)
\(\Leftrightarrow A=x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}+5-\dfrac{9}{4}\)
\(\Leftrightarrow A=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Min \(A=\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{2}\)
a) \(A=4x-x^2+3\)
\(\Leftrightarrow A=-x^2+4x-4+7\)
\(\Leftrightarrow A=-\left(x^2-4x+4\right)+7\)
\(\Leftrightarrow A=-\left(x-2\right)^2+7\)
Vậy GTLN của \(A=7\) khi \(x-2=0\Leftrightarrow x=2\)
b) \(B=2x^2-6x\)
\(\Leftrightarrow B=2x^2-6x+\dfrac{9}{2}-\dfrac{9}{2}\)
\(\Leftrightarrow B=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}\)
\(\Leftrightarrow B=2\left[x^2-2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\right]-\dfrac{9}{2}\)
\(\Leftrightarrow B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)
Vậy GTNN của biểu thức \(B=\dfrac{-9}{2}\) khi \(x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)
c) \(D=2x-2x^2-5\)
\(\Leftrightarrow D=-2x^2+2x-\dfrac{1}{2}-\dfrac{9}{2}\)
\(\Leftrightarrow D=-\left(2x^2-2x+\dfrac{1}{2}\right)-\dfrac{9}{2}\)
\(\Leftrightarrow D=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}\)
\(\Leftrightarrow D=-2\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\dfrac{9}{2}\)
\(\Leftrightarrow D=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\)
Vậy GTLN của \(D=\dfrac{-9}{2}\) khi \(x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)