\(y=\frac{x^2}{x^2-5x+7}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

mình sẽ cho bạn 1 công thức lớp 9, nhớ nhé, nó sẽ giải được hầu hết các bài tìm min max mà có phân số như kiểu bài này

đối với phương trình bậc 2 ẩn x ví dụ như ax^2+bx+c=0 với a,b,c là tham số

ta luôn có \(\Delta\)(đọc là đenta, phiên âm của delta, viết giống tam giác) =b^2-4ac

để phương trình có nghiệm thì  \(\Delta\ge0\)thì phương trình mới có nghiệm

đó là công thức, giải bài trên thì bạn làm bước sau ra nháp: 

\(yx^2-5yx+7y=x^2\Rightarrow x^2\left(y-1\right)-5yx+7y=0\)

phương trình trên là phương trình bậc 2 ẩn x, y là tham số, theo công thức trên thì a là y-1, b là -5y, c là 7y

vậy để phương trình luôn có nghiệm thì \(\Delta=b^2-4ac=25y^2-4.7y\left(y-1\right)\ge0\)

Giải cái bất phương trình đó ra bạn sẽ có \(-3y^2+28y\ge0\Rightarrow y\left(3y-28\right)\le0\)

giải ra sẽ có \(0\le y\le\frac{28}{3}\)

thế là đã tìm ra min và max của y

Trình bày vào vở như sau:

Đầu tiên tự chứng minh mẫu dương nhé, mình lười ^^

sau đó viết :

\(y=\frac{x^2}{x^2-5x+7}\ge0\)

dấu = xảy ra khi x=0

ta có: \(y=\frac{x^2}{x^2-5x+7}=\frac{28}{3}+\left(\frac{x^2}{x^2-5x+7}-\frac{28}{3}\right)\)

\(=...=\frac{28}{3}-\frac{25x^2-140x+196}{3\left(x^2-5x+7\right)}=\frac{28}{3}-\frac{\left(5x-14\right)^2}{...}\le\frac{28}{3}\)

(mấy cái bước quy đồng tự làm hộ mình cái, mình lười ^^)

rồi đó, vậy tìm được min và max của y, khi bạn tìm được min max y ra nháp rồi thì cứ lấy biểu thức ban đầu cộng thêm với cái số đó rồi trừ đi nó, cuối cùng kiểu gì cũng ra 1 cái bình phương, với điều kiện là bài này phải có mẫu dương nhé

mệt quá ai có lòng từ bi phát

6 tháng 4 2017

-Min : quá dễ,đánh giá mẫu dương, tử ko âm từ đó min=0 ,đẳng thức xảy ra <=> x=0

-Max : A đạt max <=> 1/A đạt min

biến đổi về 1/A=7(1/x-5/14)2+3/28 >/ 3/28 => min của 1/A = 3/28 => maxA=28/3

đẳng thức xảy ra <=> x=14/5

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

30 tháng 11 2017

x^2/x^2-5x+7 >= 0

Dấu "=" xảy ra <=> x = 0

Vậy GTNN của biểu thức trên = 0 <=> x = 0

30 tháng 11 2017

Bạn chép sai đề mất rồi

19 tháng 3 2019

Bài này chơi Delta nha

\(P=\frac{x^2+1}{x^2-x+1}\Rightarrow P-2=\frac{x^2+1-2x^2+2x-2}{x^2-x+1}=\frac{-\left(x^2-2x+1\right)}{x^2-x+1}=\frac{-\left(x-1\right)^2}{x^2-x+1}\)

\(\Rightarrow P=2-\frac{\left(x-1\right)^2}{x^2-x+1}\le2\)

Max P = 2 \(\Leftrightarrow x=1\)

\(P=\frac{x^2+1}{x^2-x+1}\Rightarrow P-\frac{2}{3}=\frac{x^2+1-\frac{2}{3}\left(x^2-x+1\right)}{x^2-x+1}=\frac{\frac{1}{3}\left(x^2+2x+1\right)}{x^2-x+1}=\frac{\frac{1}{3}\left(x+1\right)^2}{x^2-x+1}\)

\(\Rightarrow P=\frac{2}{3}+\frac{\frac{1}{3}\left(x+1\right)^2}{x^2-x+1}\ge\frac{2}{3}\)

Min P = \(\frac{2}{3}\Leftrightarrow x=-1\)

Vậy ...

\(Q\ge0\Leftrightarrow x=0\)

Chia cả tử và mẫu cho x^2 được :

\(Q=\frac{1}{1-\frac{5}{x}+\frac{7}{x^2}}\)

Đặt \(\frac{1}{x}=a\) , ta có :

\(Q=\frac{1}{1-5a+7a^2}=\frac{1}{7\left(a^2-\frac{5}{7}a+\frac{25}{196}+\frac{3}{196}\right)}=\frac{1}{7\left[\left(a-\frac{5}{14}\right)^2+\frac{3}{196}\right]}\le\frac{1}{7.\frac{3}{196}}=\frac{28}{3}\)Dấu " = " xảy ra \(\Leftrightarrow a=\frac{5}{14}\Leftrightarrow\frac{1}{x}=\frac{5}{14}\Leftrightarrow x=\frac{14}{5}\)

Vậy ...

15 tháng 1 2019

Bài 2 :

a) \(P=x^2+y^2+xy+x+y\)

\(2P=2x^2+2y^2+2xy+2x+2y\)

\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)

\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)

\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)

\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)

Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc

17 tháng 1 2019

@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!

28 tháng 3 2018

giải câu b trc nha

= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009

vậy min=2009 khi x=1

28 tháng 3 2018

https://olm.vn//hoi-dap/question/57101.html     

Tham khảo đây nhá bạn

10 tháng 1 2020

Phân thức đại số

11 tháng 1 2020

bạn có thể giải mấy câu kia luôn