
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)
Đạt được khi x = 9
2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)
\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)
\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)
Không có GTLN nhé

Mình tách thành hai phần nhìn cho dễ hiểu nhé !
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
+) \(\frac{x-3\sqrt{x}}{x-9}-1=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}-1=\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{\sqrt{x}+3}{\sqrt{x}+3}=\frac{-3}{\sqrt{x}+3}\)
+) \(\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\)
\(=\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\frac{x-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{9-x+x-9-x+4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{4-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
=> \(\frac{-3}{\sqrt{x}+3}\div\frac{4-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{-3}{\sqrt{x}+3}\times\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{4-x}\)
\(=\frac{3\left(\sqrt{x}-2\right)}{x-4}=\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{3}{\sqrt{x}+2}\)

Giúp tôi giải toán và làm văn
Tất cảToánVăn - Tiếng ViệtTiếng Anh

26 tháng 7 2016 lúc 15:48
I don't need nghĩa là gì , đoán đúng cho 10 nghìn ,cấm tra google dịch
Được cập nhật Vài giây trước


Thống kê hỏi đáp
Báo cáo sai phạm
i don't need la tao ko can

Thống kê hỏi đáp
Báo cáo sai phạm
Ôi trời câu hỏi của bạn trờ thành câu trả lời luôn hả ?

Thống kê hỏi đáp
Báo cáo sai phạm
ngu đâu mà trả lời .
hứ

10 tháng 3 lúc 14:50
Choa≥0,b≥0 Chứng minh bất đẳng thức Cauchy : a+b2 ≥√ab
Được cập nhật 2 phút trước


Thống kê hỏi đáp
Báo cáo sai phạm
BĐT tương đương :
a+b≥2√ab
⇔(a+b)2≥4ab
⇔(a−b)2≥0 ( luôn đúng )
Vậy ta có đpcm
Dấu "=" xảy ra ⇔a=b


Theo đề bài, ta có:
x3+y3=x2−xy+y2x3+y3=x2−xy+y2
hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0
⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1
+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52
+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4
Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3

Bài 1:
\(P=x\sqrt{3-x^2}=\sqrt{x^2}\cdot\sqrt{3-x^2}\)
\(=\sqrt{x^2\left(3-x^2\right)}\)\(\le\frac{x^2+3-x^2}{2}=\frac{3}{2}\)
Dấu = khi \(x=\sqrt{\frac{3}{2}}\)
Vậy MaxP=\(\frac{3}{2}\Leftrightarrow x=\sqrt{\frac{3}{2}}\)

Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
\(P=\sqrt{x}+\sqrt{9-x}+\sqrt{x\left(9-x\right)}\ge\sqrt{x}+\sqrt{9-x}\)
\(\Rightarrow P^2\ge\left(\sqrt{x}+\sqrt{9-x}\right)^2=9+2\sqrt{x\left(9-x\right)}\ge9\)
\(\Rightarrow P\ge3\)
\(P_{\min}=3\) khi x=0 hoặc x=9
\(P=\sqrt{x}+\sqrt{9-x}+\sqrt{x\left(9-x\right)}\le\sqrt{2\left(x+9-x\right)}+\frac12\left(x+9-x\right)=\frac92+3\sqrt2\)
\(P_{max}=\frac92+3\sqrt2\) khi \(x=9-x\Rightarrow x=\frac92\)
Bước 1: Viết lại biểu thức cho dễ nhìn
\(P = \frac{x}{9 - x} + x \left(\right. 9 - x \left.\right)\)
Bước 2: Tìm đạo hàm của \(P\)
\(P = \frac{x}{9 - x} + x \left(\right. 9 - x \left.\right)\)
Đạo hàm từng phần:
\(u = x , v = 9 - x \Rightarrow u^{'} = 1 , v^{'} = - 1\)\(\left(\left(\right. \frac{u}{v} \left.\right)\right)^{'} = \frac{u^{'} v - u v^{'}}{v^{2}} = \frac{1 \cdot \left(\right. 9 - x \left.\right) - x \cdot \left(\right. - 1 \left.\right)}{\left(\right. 9 - x \left.\right)^{2}} = \frac{9 - x + x}{\left(\right. 9 - x \left.\right)^{2}} = \frac{9}{\left(\right. 9 - x \left.\right)^{2}}\)
\(9 - 2 x\)
Vậy đạo hàm của \(P\) là:
\(P^{'} = \frac{9}{\left(\right. 9 - x \left.\right)^{2}} + 9 - 2 x\)
Bước 3: Tìm nghiệm của \(P^{'} = 0\)
\(\frac{9}{\left(\right. 9 - x \left.\right)^{2}} + 9 - 2 x = 0\)
Chuyển vế:
\(\frac{9}{\left(\right. 9 - x \left.\right)^{2}} = 2 x - 9\)
Lưu ý: Để vế phải \(2 x - 9\) dương (vì vế trái luôn dương), ta có:
\(2 x - 9 > 0 \Rightarrow x > \frac{9}{2} = 4.5\)
Nhân hai vế với \(\left(\right. 9 - x \left.\right)^{2}\):
\(9 = \left(\right. 2 x - 9 \left.\right) \left(\right. 9 - x \left.\right)^{2}\)
Đặt \(t = 9 - x\), khi \(x > 4.5 \Rightarrow t = 9 - x < 4.5\).
Thay \(x = 9 - t\):
\(9 = \left(\right. 2 \left(\right. 9 - t \left.\right) - 9 \left.\right) \cdot t^{2} = \left(\right. 18 - 2 t - 9 \left.\right) t^{2} = \left(\right. 9 - 2 t \left.\right) t^{2}\)
Ta có:
\(9 = \left(\right. 9 - 2 t \left.\right) t^{2} = 9 t^{2} - 2 t^{3}\)
Chuyển hết về một phía:
\(9 t^{2} - 2 t^{3} - 9 = 0\)
Hay:
\(- 2 t^{3} + 9 t^{2} - 9 = 0\)
Nhân cả phương trình với -1 để thuận tiện:
\(2 t^{3} - 9 t^{2} + 9 = 0\)
Bước 4: Giải phương trình \(2 t^{3} - 9 t^{2} + 9 = 0\)
Thử các nghiệm nguyên hoặc hữu tỉ:
\(2 \left(\right. 1 \left.\right)^{3} - 9 \left(\right. 1 \left.\right)^{2} + 9 = 2 - 9 + 9 = 2 \neq 0\)
\(2 \left(\right. 27 \left.\right) - 9 \left(\right. 9 \left.\right) + 9 = 54 - 81 + 9 = - 18 \neq 0\)
\(2 \left(\right. 4.5 \left.\right)^{3} - 9 \left(\right. 4.5 \left.\right)^{2} + 9 = 2 \cdot 91.125 - 9 \cdot 20.25 + 9 = 182.25 - 182.25 + 9 = 9 \neq 0\)
\(2 \left(\right. 8 \left.\right) - 9 \left(\right. 4 \left.\right) + 9 = 16 - 36 + 9 = - 11 \neq 0\)
Không tìm được nghiệm nguyên, dùng phương pháp đồ thị hoặc nghiệm gần đúng.
Bước 5: Tính giá trị gần đúng nghiệm \(t\)
Ta có hàm:
\(f \left(\right. t \left.\right) = 2 t^{3} - 9 t^{2} + 9\)
Vậy nghiệm nằm trong khoảng \(\left(\right. 4 , 5 \left.\right)\).
Tiếp tục thử \(t = 4.5\):
\(f \left(\right. 4.5 \left.\right) = 2 \cdot 91.125 - 9 \cdot 20.25 + 9 = 182.25 - 182.25 + 9 = 9 > 0\)
Có vẻ trước đó tính sai, ta kiểm tra lại:
\(t = 4.25 \Rightarrow f \left(\right. 4.25 \left.\right) = 2 \cdot \left(\right. 4.25 \left.\right)^{3} - 9 \cdot \left(\right. 4.25 \left.\right)^{2} + 9\)\(\left(\right. 4.25 \left.\right)^{3} = 76.765625 , \left(\right. 4.25 \left.\right)^{2} = 18.0625\)\(f \left(\right. 4.25 \left.\right) = 2 \cdot 76.765625 - 9 \cdot 18.0625 + 9 = 153.53125 - + 9 = - 0.03125\)
Gần bằng 0, nghiệm ở gần \(4.25\).
Bước 6: Tính nghiệm x
\(t \approx 4.25 \Rightarrow x = 9 - t = 9 - 4.25 = 4.75\)
Bước 7: Tính giá trị \(P\) tại \(x = 4.75\)
\(P = \frac{4.75}{9 - 4.75} + 4.75 \left(\right. 9 - 4.75 \left.\right) = \frac{4.75}{4.25} + 4.75 \times 4.25\)\(\frac{4.75}{4.25} \approx 1.1176 , 4.75 \times 4.25 = 20.1875\)\(P \approx 1.1176 + 20.1875 = 21.3051\)
Bước 8: Xét giới hạn tại biên \(x \rightarrow 0^{+}\) và \(x \rightarrow 9^{-}\)
\(P \rightarrow \frac{0}{9} + 0 \times 9 = 0\)
\(\frac{x}{9 - x} \rightarrow + \infty , x \left(\right. 9 - x \left.\right) \rightarrow 0\)
Nên \(P \rightarrow + \infty\).
Kết luận:
Vì \(P \rightarrow + \infty\) gần biên \(x \rightarrow 9^{-}\), nên không có GTLN hữu hạn trên khoảng \(\left(\right. 0 , 9 \left.\right)\).
Còn GTNN là khoảng \(x \rightarrow 0\) hoặc tại cực trị \(x = 4.75\).