K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2020

Cảm ơn bạn nha

NV
18 tháng 9 2020

a/

\(y=\sqrt{5-sin2x}\)

Do \(-1\le sin2x\le1\Rightarrow2\le y\le\sqrt{6}\)

\(y_{min}=2\) khi \(sin2x=1\)

\(y_{max}=\sqrt{6}\) khi \(sin2x=-1\)

b/

\(y=cos^2x-3cosx-4+8=\left(cosx+1\right)\left(cosx-4\right)+8\le8\)

\(y_{max}=8\) khi \(cosx=-1\)

\(y=cos^2x-3cosx+2+2=\left(1-cosx\right)\left(2-cosx\right)+2\ge2\)

\(y_{min}=2\) khi \(cosx=1\)

NV
14 tháng 9 2020

8.

\(y=\left(cosx+1\right)^2-1\ge-1\Rightarrow y_{min}=-1\)

\(y=\left(cosx-1\right)\left(cosx+3\right)+3\le3\Rightarrow y_{max}=3\)

10.

\(y=2-\left(cosx+1\right)^2\le2\Rightarrow y_{max}=2\)

14.

Hàm tuần hoàn với chu kì \(T=\pi\)

15.

Đáp án A đúng

20.

\(-1\le sin\left(\frac{x}{2}+\frac{\pi}{7}\right)\le1\Rightarrow-5\le y\le-1\)

\(y_{max}=-1\) ; \(y_{min}=-5\)

15 tháng 9 2021
a) y=3-cos^2x b)4-|sin 2x|-5 Câu hỏi này mới đúng?
NV
15 tháng 9 2020

8.

\(y=cos^2x+2\left(2cos^2x-1\right)=5cos^2x-2\)

Do \(0\le cos^2x\le1\Rightarrow-2\le y\le3\)

\(y_{min}=-2;y_{max}=3\)

10.

\(y=2-\left(cosx+1\right)^2\le2\)

\(y_{max}=2\)

14.

Hàm tuần hoàn với chu kì \(T=\pi\)

NV
20 tháng 9 2020

1.

Các hàm \(sinx;sin\frac{x}{2};sin\frac{x}{3};...;sin\frac{x}{10}\) có chu kì lần lượt là \(2\pi;4\pi;6\pi;...;20\pi\)

\(\Rightarrow\) Chu kì của hàm đã cho là \(BCNN\left(2\pi;4\pi;...;20\pi\right)=15120\pi\)

2.

a.

\(y=cos^22x+3cos2x+3\)

\(y=\left(cos2x+1\right)\left(cos2x+2\right)+1\ge1\Rightarrow y_{min}=1\) khi \(cos2x=-1\)

\(y=\left(cos2x-1\right)\left(cos2x+4\right)+7\le7\Rightarrow y_{max}=7\) khi \(cos2x=1\)

b.

Đặt \(a=4sinx-3cosx\Rightarrow a^2\le\left(4^2+\left(-3\right)^2\right)\left(sin^2x+cos^2x\right)=25\)

\(\Rightarrow-5\le a\le5\)

\(y=a^2-4a+1\) với \(a\in\left[-5;5\right]\)

\(y=\left(a-2\right)^2-3\ge-3\Rightarrow y_{min}=-3\) khi \(a=2\)

\(y=\left(a-9\right)\left(a+5\right)+46\le46\Rightarrow y_{max}=46\) khi \(a=-5\)

21 tháng 9 2020

Em ko hiểu câu 2a

4 tháng 8 2019

a) Ta có : -\(\sqrt{a^2+b^2}< =asinx+bcosx< =\sqrt{a^2+b^2}\)

=> \(-\sqrt{12^2+\left(-5\right)^2}< =y< =\sqrt{12^2+\left(-5\right)^2}\)

<=> \(-\sqrt{13}< =y< =\sqrt{13}\)

Vậy min=\(-\sqrt{13}\) ,max=\(\sqrt{13}\)

b) \(-\sqrt{9+16}< =3cosx-4sinx< =\sqrt{9+16}\)

<=> -5 <=3cos x -4sinx <= 5

<=> 0<= y <= 10

Vậy min=0 max=10

NV
7 tháng 9 2020

2.

\(0\le\left|sinx\right|\le1\Rightarrow1\le y\le3\)

Min và max lần lượt là 3 và 1

3.

\(cos\left(x-\frac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)

8.

\(y=\frac{1}{2}+\frac{1}{2}cos2x+2cos2x=\frac{1}{2}+\frac{5}{2}cos2x\le\frac{1}{2}+\frac{5}{2}.1=3\)

15.

Nó đi qua vô số điểm nên ko có 4 đáp án để chọn thì ko ai có thể trả lời câu này cho bạn cả

18.

\(y=\frac{sinx+2cosx+1}{sinx+cosx+2}\Leftrightarrow y.sinx+y.cosx+2y=sinx+2cosx+1\)

\(\Leftrightarrow\left(y-1\right)sinx+\left(y-2\right)cosx=1-2y\)

\(\left(y-1\right)^2+\left(y-2\right)^2\ge\left(1-2y\right)^2\)

\(\Leftrightarrow2y^2+2y-4\le0\Rightarrow-2\le y\le1\)

\(\Rightarrow y_{max}=1\)

NV
6 tháng 8 2020

e/ Tử số đến đâu và mẫu số đến đâu bạn?

f/ Căn đến đâu bạn?

g/ Căn đến đâu bạn?

h/ \(y=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\)

\(=1-\frac{1}{2}\left(2sinx.cosx\right)^2=1-\frac{1}{2}sin^22x\)

Do \(0\le sin^22x\le1\Rightarrow\frac{1}{2}\le y\le1\)

\(y_{max}=1\) khi \(sin^22x=0\)

\(y_{min}=\frac{1}{2}\) khi \(sin^22x=1\)

t/ \(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(y=1-3sin^2x.cos^2x=1-\frac{3}{4}\left(2sinx.cosx\right)^2\)

\(y=1-\frac{3}{4}sin^22x\)

Tượng tự câu trên \(\Rightarrow\frac{1}{4}\le y\le1\)

\(y_{min}=\frac{1}{4}\) khi \(sin^22x=1\)

\(y_{max}=1\) khi \(sin^22x=0\)

Tốt nhất là bạn sử dụng công cụ gõ công thức

NV
26 tháng 9 2020

\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(=1-3sin^2x.cos^2x=1-\frac{3}{4}sin^22x\)

Do \(0\le sin^22x\le1\Rightarrow\frac{1}{4}\le y\le1\)

\(y_{min}=\frac{1}{4}\) khi \(sin^22x=1\)

\(y_{max}=1\) khi \(sin^22x=0\)

26 tháng 9 2020

Hỏi đáp Toán

11 tháng 5 2022

a.\(-1\le cosx\le1\Rightarrow-4\le y=3cosx-1\le2\)

b.-1 \(\le sinx\le1\)\(\Rightarrow3\le y=5+2sinx\le7\)  

c.\(\sqrt{3-1}\le\sqrt{3+cos2x}\le\sqrt{3+1}\Rightarrow\sqrt{2}\le y\le2\)

d.\(y=\sqrt{5sinx-1}+2\le\sqrt{5.1-1}+2=4\)

\(y=\sqrt{5sinx-1}+2\ge2\) . " = " \(\Leftrightarrow sinx=\dfrac{1}{5}\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\dfrac{1}{5}\right)+2k\pi\\x=\pi-arcsin\left(\dfrac{1}{5}\right)+2k\pi\end{matrix}\right.\)  ( k thuộc Z )