\(y=\sqrt{3+x}+\sqrt{5-x}\)

Help me 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2020

Ta có: \(y=\sqrt{3+x}+\sqrt{5-x}\)

ĐKXĐ: \(-3\le x\le5\)

\(y^2=3+x+5-x+2\sqrt{\left(3+x\right)\left(5-x\right)}=8+2\sqrt{\left(3+x\right)\left(5-x\right)}\)\(\ge8\)

\(\Rightarrow y\ge2\sqrt{2}\)

Dấu "=" xảy ra khi và chỉ khi \(\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)(thỏa mãn)

Vậy min y = \(2\sqrt{2}\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

mặt khác \(y^2\) = \(8+2\sqrt{\left(3+x\right)\left(5-x\right)}\le8+3+x+5-x=16\)

\(\Rightarrow y\le4\)

Dấu"=" xảy ra khi và chỉ khi \(3+x=5-x\Leftrightarrow x=1\)(thỏa mãn)

Vậy max y = 4 \(\Leftrightarrow x=1\)

AH
Akai Haruma
Giáo viên
7 tháng 7 2019

Lời giải:
ĐKXĐ: \(x\leq \frac{3}{2}\)

Hàm số chỉ có min chứ không có max bạn nhé.

\(y=\sqrt{3-2x}+\sqrt{5-2x}\)

\(\Rightarrow y^2=3-2x+5-2x+2\sqrt{(3-2x)(5-2x)}\)

\(=8-4x+2\sqrt{(3-2x)(5-2x)}\)

Ta thấy:
\(x\leq \frac{3}{2}\Rightarrow 8-4x\geq 8-4.\frac{3}{2}=2\)

\(2\sqrt{(3-2x)(5-2x)}\geq 0\) (theo tính chất căn bậc 2)

\(\Rightarrow y^2=8-4x+2\sqrt{(3-2x)(5-2x)}\geq 2\)

\(\Rightarrow y\geq \sqrt{2}\) (do $y$ không âm)

Vậy $y_{\min}=\sqrt{2}$ khi $x=\frac{3}{2}$

7 tháng 7 2019

Em mới học dạng này sơ sơ thôi nên không rành lắm, mọi người check giúp ạ.

ĐK x =< 3/2

Xét \(x_1< x_2\le\frac{3}{2}\)

\(y=f\left(x\right)=\sqrt{3-2x}+\sqrt{5-2x}\)

Ta có: \(f\left(x_1\right)-f\left(x_2\right)=\left(\sqrt{3-2x_1}-\sqrt{3-2x_2}\right)+\left(\sqrt{5-2x_1}-\sqrt{5-2x_2}\right)>0\)(do dễ thấy(em lười viết ra quá) rằng mỗi cái ngoặc đều lớn hơn 0)

Do đó f(x1) > f(x2). Do vậy x càng tăng thì giá trị f(x) càng nhỏ hay y đạt cực tiểu tại x = 3/2. Vậy \(y_{min}=\sqrt{3-2.\frac{3}{2}}+\sqrt{5-2.\frac{3}{2}}=\sqrt{2}\)

Đẳng thức xảy ra khi x = 3/2

Vậy...

9 tháng 12 2018

5. \(y=\dfrac{-3x}{x+2}\)

xác định khi: \(x+2\ne0\Leftrightarrow x\ne-2\)

vậy D= (\(-\infty;+\infty\))\{-2}

6. \(y=\sqrt{-2x-3}\)

xác định khi: \(-2x-3\ge0\Leftrightarrow x\le\dfrac{-3}{2}\)

vậy D= (\(-\infty;\dfrac{-3}{2}\)]

7. \(y=\dfrac{3-x}{\sqrt{x-4}}\)

xác định khi: x-4 >0 <=> x>4

vậy D= (\(4;+\infty\))

8. \(y=\dfrac{2x-5}{\left(3-x\right)\sqrt{5-x}}\)

xác định khi: \(\left\{{}\begin{matrix}3-x\ne0\\5-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x< 5\end{matrix}\right.\)

vậy D= (\(-\infty;5\))\ {3}

9.\(y=\sqrt{2x+1}+\sqrt{4-3x}\)

xác định khi: \(\left\{{}\begin{matrix}2x+1\ge0\\4-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{2}\\x\le\dfrac{4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{-1}{2}\le x\le\dfrac{4}{3}\)

vậy D= [\(\dfrac{-1}{2};\dfrac{4}{3}\)]

9 tháng 12 2018

1. \(y=\dfrac{3x-2}{x^2-4x+3}\)

xác định khi : \(x^2-4x+3\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)

vậy tập xác định là: D = \(\left(-\infty;+\infty\right)\backslash\left\{3;1\right\}\)

2.\(y=2\sqrt{5-4x}\)

xác định khi \(5-4x\ge0\Leftrightarrow x\le\dfrac{5}{4}\)

vậy D= (\(-\infty;\dfrac{5}{4}\)]

3. \(y=\dfrac{2}{\sqrt{x+3}}+\sqrt{5-2x}\)

xác định khi: \(\left\{{}\begin{matrix}x+3>0\\5-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x\le\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow-3< x\le\dfrac{5}{2}\)

vậy D= (\(-3;\dfrac{5}{2}\)]

4.\(\sqrt{9-x}+\dfrac{1}{\sqrt{x+2}-2}\)

xác định khi: \(\left\{{}\begin{matrix}9-x\ge0\\x+2\ge0\\x\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le9\\x\ge-2\\x\ne2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\le x\le9\\x\ne2\end{matrix}\right.\)

Vậy D= [\(-2;9\)]\{2}

1 tháng 1 2020

Áp dụng BĐT Bunhiacopxki ta có :

\(\left(3\sqrt{x-1}+4\sqrt{5-x}\right)^2\le\left(3^2+4^2\right)\left(x-1+5-x\right)\)

\(\Leftrightarrow\left(3\sqrt{x-1}+4\sqrt{5-x}\right)^2\le100\)

\(\Leftrightarrow f\left(x\right)\le10\)

Dấu "=" xảy ra :

\(\Leftrightarrow\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\)

Vậy...

18 tháng 2 2016

tìm tập xác định của hàm số là làm thế nào chỉ ik

18 tháng 2 2016

là tìm điều kiện để hàm số có thể xác định được đó bn .