Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+\sqrt{x-2}\)
Do \(\sqrt{x-2}\ge0\forall x>2\) nên \(A\ge1\forall x>2\)
Vậy \(minA=1\Leftrightarrow x=2\)
__________
\(B=5-\sqrt{2x-1}\)
Do \(\sqrt{2x-1}\ge0\forall x\ge\frac{1}{2}\)nên \(B\le5\forall x\ge\frac{1}{2}\)
Vậy \(maxB=5\Leftrightarrow x=\frac{1}{2}\)
1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ : \(2\le x\le4\)
\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)
Áp dụng bđt AM - GM ta có :
\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)
\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)
Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2
=> A = \(\sqrt{2}\)
Vậy \(\sqrt{2}\le A\le2\)
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
\(A=\sqrt{1-x}+\sqrt{x+1}\)
\(A^2=\left(\sqrt{1-x}\cdot1+\sqrt{x+1}\cdot1\right)^2\)
Áp dụng BĐT Bunhiacospki ta có:
\(A^2\le\left(1^2+1^2\right)\left(1-x+1+x\right)\)
\(A^2\le4\)
\(A\le2\)
\(A_{max}=2\Leftrightarrow x=0\)
E ms tìm dc MAX thôi ah
ĐKXĐ: ....
a/ \(A\le\sqrt{2\left(1-x+1+x\right)}=2\Rightarrow A_{max}=2\) khi \(x=0\)
\(A\ge\sqrt{1-x+1+x}=\sqrt{2}\Rightarrow A_{min}=\sqrt{2}\) khi \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
b/ \(B\le\sqrt{2\left(x-2+6-x\right)}=2\sqrt{2}\Rightarrow B_{max}=2\sqrt{2}\) khi \(x=4\)
\(B\ge\sqrt{x-2+6-x}=2\Rightarrow B_{min}=2\) khi \(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
c/ \(A^2=\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\)
\(\Rightarrow A^2\le\left(2+3\right)\left(2x^2+3y^2\right)\le5.5=25\)
\(\Rightarrow-5\le A\le5\)
\(A_{max}=5\) khi \(x=y=1\)
\(A_{min}=-5\) khi \(x=y=-1\)
ĐKXĐ: ...
Đặt \(\sqrt{2+x}+\sqrt{2-x}=t>0\)
\(t=\sqrt{2+x}+\sqrt{2-x}\le\sqrt{2\left(2+x+2-x\right)}=2\sqrt{2}\) (Bunhiacopxki)
\(t^2=4+2\sqrt{4-x^2}\ge4\Rightarrow t\ge2\) (1)
\(\Rightarrow2\le t\le2\sqrt{2}\)
Cũng từ (1) ta có \(\sqrt{4-x^2}=\frac{t^2-4}{2}\)
\(\Rightarrow P=t-\frac{t^2-4}{2}=\frac{-t^2+2t+4}{2}=\frac{t\left(2-t\right)+4}{2}\)
Do \(t\ge2\Rightarrow2-t\le0\Rightarrow t\left(2-t\right)\le0\)
\(\Rightarrow P\le\frac{0+4}{2}=2\Rightarrow P_{max}=2\) khi \(t=2\) hay \(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(P=\frac{-t^2+2t+4}{2}=\frac{-t^2+2t+8-4\sqrt{2}-4+4\sqrt{2}}{2}=\frac{\left(2\sqrt{2}-t\right)\left(t+2\sqrt{2}-2\right)-4+4\sqrt{2}}{2}\)
Do \(t\le2\sqrt{2}\Rightarrow2\sqrt{2}-t\ge0\Rightarrow\left(2\sqrt{2}-t\right)\left(t+2\sqrt{2}-2\right)\ge0\)
\(\Rightarrow P\ge\frac{-4+4\sqrt{2}}{2}=2\sqrt{2}-2\)
\(\Rightarrow P_{min}=2\sqrt{2}-2\) khi \(t=2\sqrt{2}\Leftrightarrow2+x=2-x\Rightarrow x=0\)
Lời giải:
Tìm max:
Áp dụng BĐT Bunhiacopsky:
\(M^2=(2x+\sqrt{5-x^2})^2\leq (2^2+1)(x^2+5-x^2)=25\)
\(\Rightarrow M\leq 5\) hay \(M_{\max}=5\Leftrightarrow x=2\)
Tìm min:
Ta thấy \(5-x^2\geq 0\Rightarrow x^2\leq 5\rightarrow x\geq -\sqrt{5}\)
Do đó: \(M=2x+\sqrt{5-x^2}\geq =-2\sqrt{5}+0=-2\sqrt{5}\)
\(\Rightarrow M_{\min}=-2\sqrt{5}\Leftrightarrow x=-\sqrt{5}\)