Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
\(A=\dfrac{8x+3}{4x^2+1}=\dfrac{4\left(4x^2+1\right)-\left(4x-1\right)^2}{4x^2+1}=4-\dfrac{\left(4x-1\right)^2}{4x^2+1}\le4\)
Vậy GTLN của A là 4 . Dấu " = " xảy ra khi \(\left(4x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{4}\)
\(\text{a)* }A=\dfrac{8x+3}{4x^2+1}=\dfrac{\left(4x^2+8x+4\right)-\left(4x^2+1\right)}{4x^2+1}\\ =\dfrac{4x^2+8x+4}{4x^2+1}-\dfrac{4x^2+1}{4x^2+1}=\dfrac{4\left(x+1\right)^2}{4x^2+1}-1\ge-1\)
Dấu \("="\) xảy ra khi \(\left(x+1\right)^2=0\)
\(\Leftrightarrow x=-1\)
\(\text{* }A=\dfrac{8x+3}{4x^2+1}=\dfrac{-\left(16x^2-8x+1\right)+\left(16x^2+4\right)}{4x^2+1}\\ =\dfrac{-\left(16x^2-8x+1\right)}{4x^2+1}+\dfrac{16x^2+4}{4x^2+1}\\ =\dfrac{-\left(16x^2-8x+1\right)}{4x^2+1}+\dfrac{4\left(4x^2+1\right)}{4x^2+1}\\ =\dfrac{-\left(4x-1\right)^2}{4x^2+1}+4\)
Dấu \("="\) xảy ra khi \(4x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
Vậy \(A_{Min}=-1\Leftrightarrow x=-1\)
\(A_{Max}=4\Leftrightarrow x=\dfrac{1}{4}\)
P = \(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\). \(\frac{\left(x-1\right)^2}{2}\)( x\(\ge0\); x\(\ne\)1)
= \(\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\) . \(\frac{\left(x-1\right)^2}{2}\)
= \(\frac{x-\sqrt{x}+2-x-\sqrt{x}+2}{\sqrt{x}-1}\). \(\frac{x-1}{2}\)
= \(\frac{\left(-2\sqrt{x}+4\right)\left(\sqrt{x}+1\right)}{2}\)
= \(\left(\sqrt{x}+1\right)\left(2-\sqrt{x}\right)\)
= -x2 + \(\sqrt{x}\)+ 2
b. tự tính nha
c, P = -x2 + \(\sqrt{x}+2\)
= - (x2 - 2.x.1/2 + 1/4) +2 +1/4
= - (x-1/2)2+ 9/4
ta có (x - 1/2)2 \(\ge0\forall x\)\(\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\forall x\)
dấu "=" xảy ra khi và chỉ khi x-1/2 = 0
x=1/2
vậy GTLN của P= 9/4 khi và chỉ khi x=1/2
#mã mã#