K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2021

\(A=\dfrac{3x^2+12x+17}{x^2+4x+5}=\dfrac{3\left(x^2+4x+5\right)+2}{x^2+4x+5}=3+\dfrac{2}{x^2+4x+5}\)

Ta có: \(x^2+4x+5=x^2+4x+4+1=\left(x+2\right)^2+1\ge1\)

\(\Rightarrow\dfrac{2}{x^2+4x+5}\le2\Rightarrow A\le3+2=5\)

\(\Rightarrow A_{max}=5\) khi \(x=-2\)

9 tháng 6 2021

bạn viết đề có đúng không đấy

 

6 tháng 6 2015

+) Tính giá trị của  x2 + 4x - 1 tại x = -2 + \(\sqrt{5}\)

=> (-2 + \(\sqrt{5}\)2 + 4.(-2 + \(\sqrt{5}\)) - 1 = 4 - 4\(\sqrt{5}\) + 5 - 8 + 4\(\sqrt{5}\) - 1   = 0 

Vậy x2 + 4x - 1  = 0 tại x = -2 + \(\sqrt{5}\)

+) A = 3x3.(x2 + 4x  - 1 ) - 5x3 - 23x2 - 7x + 1

       = 3x3.(x2 + 4x  - 1 ) - 5x.(x2 + 4x - 1) - 3x2 - 12x + 1

      = (3x- 5x).(x2 + 4x  - 1 ) - 3.(x2 + 4x -1) - 2 =  (3x- 5x - 3).(x2 + 4x  - 1 )  - 2

Vậy tại x = - 2 + \(\sqrt{5}\) thì A = - 2 

+) A =  (3x- 5x - 3).(x2 + 4x  - 1 )  - 2 chia cho (x2 + 4x  - 1 ) dư - 2

11 tháng 8 2016

bn coi lại đề

15 tháng 8 2016

sao phải coi lại

NV
26 tháng 10 2019

\(\Leftrightarrow\frac{x}{5}+\frac{y}{6}+\frac{z}{4}\le1\)

Đặt \(\left(\frac{x}{5};\frac{y}{6};\frac{z}{4}\right)=\left(a;b;c\right)\Rightarrow0\le a;b;c\le1\)\(a+b+c\le1\)

\(T=25a^2+36b^2+16c^2-20a-24b-4c\)

\(25a\left(a-\frac{32}{25}\right)\le0\Rightarrow25a^2\le32a\)

\(36b\left(b-1\right)\le0\Rightarrow36b^2\le36b\)

\(16c\left(c-1\right)\le0\Rightarrow16c^2\le16c\)

\(\Rightarrow T\le32a+36b+16c-20a-24b-4c=12\left(a+b+c\right)\le12\)

\(T_{max}=12\) khi \(\left\{{}\begin{matrix}a=0\\b=0\\c=1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}a=0\\b=1\\c=0\end{matrix}\right.\)