Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
do x,y bình đẳng như nhau giả sử \(x\ge y\)
Ta có:x2018+y2018=2
mà \(x^{2018}\ge0,y^{2018}\ge0\)
\(\Rightarrow x^{2018}+y^{2018}\ge0\)
Do \(x^{2018}+y^{2018}=2=1+1=2+0\)(do x lớn hơn hoặc bằng y)
Với \(x^{2018}+y^{2018}=1+1\)\(\Rightarrow x^{2018}=y^{2018}=1\)
\(\Rightarrow x=y=1;x=y=-1;x=1,y=-1\)(do x lớn hơn hoặc bằng y)
\(\Rightarrow Q=1+1=2\)\(\left(1\right)\)
Với \(x^{2018}+y^{2018}=2+0\)\(\Rightarrow x^{2018}=2\)(vô lý vỳ x,y thuộc Z)
Vậy........................
'=Bài 3:
\(Y=\left(x^{100}+1+1+1+1+1+1+1+1+1\right)-10x^{10}+1\)
Áp dụng BĐT Cauchy cho 10 số không âm ta có:
\(x^{100}+1+1+1+1+1+1+1+1+1\ge10\sqrt{x^{100}}=10x^{10}\)
\(Y\ge10x^{10}-10x^{10}+1=1\)
\(\Rightarrow maxY=1\)
Dấu "=" xảy ra\(\Leftrightarrow x^{100}=1\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
1/ Điều kiện: x>=2009.
Ta có: \(y=x-2\sqrt{x-2009}=\left(x-2009\right)-2\sqrt{x-2009}+1+2008.\)
=> \(y=\left(\sqrt{x-2009}-1\right)^2+2008\)
Do \(\left(\sqrt{x-2009}-1\right)^2\ge0\) => \(y=\left(\sqrt{x-2009}-1\right)^2+2008\ge2008\)(Với mọi x>=2009)
GTNN của y là: y=2008
Đạt được khi \(\left(\sqrt{x-2009}-1\right)^2=0\) <=> x-2009=1 <=> x=2010
2/ Ta có: x+y=6 => y=6-x. Đặt A=x2y
=> A=x2y=x2(6-x)=6x2-x3 = x(6x-x2)=x(9-9+6x-x2)=x[9-(x2-6x+9)] =x[9-(x-3)2]
Do x>0 và (x-3)2 >=0 => A đạt giá trị lớn nhất khi (x-3)2=0 <=> x=3
=> GTLN của A=x2y là 3.9=27 Đạt được khi x=y=3
Với \(y\le0\Rightarrow A\le0\)
Với \(y>0\):
\(A=108.\frac{x}{2}.\frac{x}{2}.\frac{y}{3}.\frac{y}{3}.\frac{y}{3}\le\frac{108}{5^5}\left(\frac{x}{2}+\frac{x}{2}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\right)^5=\frac{108}{5^5}\)
\(A_{max}=\frac{108}{5^5}\) khi \(\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{3}{5}\end{cases}}\)
Câu 2-Ta có x^2+y^2=5
(x+y)^2-2xy=5
Đặt x+y=S. xy=P
S^2-2P=5
P=(S^2-5)/2
Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2
Rùi tự tính
Câu1
Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)
=> P<=4/3(a+b+c)=4/3
Vậy Max p =4/3 khi a=4b=16c
\(A=y-2y^2+4040=-2\left(y^2-\dfrac{y}{2}+\dfrac{1}{16}\right)+\dfrac{32321}{8}\)
\(=-2\left(y-\dfrac{1}{4}\right)^2+\dfrac{32321}{8}\le\dfrac{32321}{8}\)
\(maxA=\dfrac{32321}{8}\Leftrightarrow y=\dfrac{1}{4}\)