Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+y^2-2xy-2x+y-12\)
\(A=\left(x^2-2xy+y^2\right)+x^2-2x+y-12\)
\(A=\left[\left(x-y\right)^2-2\left(x-y\right).\frac{1}{2}+\frac{1}{4}\right]+\left(x^2-x+\frac{1}{4}\right)-\frac{25}{2}\)
\(A=\left(x-y-\frac{1}{2}\right)^2+\left(x-\frac{1}{2}\right)^2-\frac{25}{2}\)
Do \(\left(x-y-\frac{1}{2}\right)^2\ge0\forall x;y\)
\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow A\ge-\frac{25}{2}\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-y-\frac{1}{2}=0\\x-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)
Vậy \(A_{Min}=-\frac{25}{2}\Leftrightarrow\left(x;y\right)=\left(\frac{1}{2};0\right)\)
\(A=-2x^2-y^2-2xy-2x+y-12\)
\(-A=2x^2+y^2+2xy+2x-y+12\)
\(-A=\left(x^2+2xy+y^2\right)+x^2+2x-y+12\)
\(-A=\left[\left(x+y\right)^2-2\left(x+y\right).\frac{1}{2}+\frac{1}{4}\right]+\left(x^2+3x+\frac{9}{4}\right)+\frac{19}{2}\)
\(-A=\left(x+y-\frac{1}{2}\right)^2+\left(x+\frac{3}{2}\right)^2+\frac{19}{2}\)
Do \(\left(x+y-\frac{1}{2}\right)^2\ge0\forall x;y\)
\(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge\frac{19}{2}\Leftrightarrow A\le-\frac{19}{2}\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x+y-\frac{1}{2}=0\\x+\frac{3}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=2\end{cases}}\)
Vậy \(A_{Max}=-\frac{19}{2}\Leftrightarrow\left(x;y\right)=\left(-\frac{3}{2};2\right)\)
a, = x^2 -2xy +y^2 +(x^2-2x+1)+2
= (x-y)^2 + (x-1)^2 + 2
GTNN bằng 2 khi: x-y=0 và x-1=0
Suy ra: x = y = 1
Vậy GTNN của biểu thức trên là: 2 tại x=y=1
b, = -x^2 -y^2 -1 + 2xy -2x +2y - y^2 + 8y - 16 + 17
= -(x^2 +y^2+1-2xy+2x-2y)-(y^2 -8y+16)+17
= -(x-y+1)^2 -(y-4)^2 +17
GTLN bằng 17 khi: x-y+1 =0 và y-4=0
x-4+1=0 và y=4
x=3 và y=4
Vậy GTLN của biểu thức là 17 tại x=3,y=4.
Chúc bạn học tốt.
\(M=\left(-4x^2+2xy-\frac{y^2}{4}\right)-x^2+2x-1-\frac{3}{4}y^2+2y-2\)
\(M=-\left(4x^2-2\cdot2x\cdot\frac{y}{2}+\frac{y^2}{4}\right)-\left(x-1\right)^2-3\left(\frac{y^2}{4}-\frac{2y}{3}\right)-2\)
\(M=-\left(2x-\frac{y}{2}\right)^2-\left(x-1\right)^2-3\left(\frac{y^2}{4}-2\cdot\frac{y}{2}\cdot\frac{2}{3}+\frac{4}{9}-\frac{4}{9}\right)-2\)
\(M=-\left(2x-\frac{y}{2}\right)^2-\left(x-1\right)^2-3\left(\frac{y}{2}-\frac{2}{3}\right)^2+\frac{4}{3}-2\)
\(M\subseteq\frac{4}{3}-2=-\frac{2}{3}\)
Dấu = xr khi/.......
\(1.\)
\(a;A=-2x^2+4x-18\)
\(A=-2\left(x^2-4x+18\right)\)
\(A=-2\left(x^2-2.x.2+4+14\right)\)
\(A=-2\left(x-2\right)^2-14\le-14\)
Dấu = xảy ra khi : \(x-2=0\)
\(\Rightarrow x=2\)
Vậy Amax =-14 tại x = 2
Các câu còn lại lm tương tự........
\(a-2x^2+4x-18\)
=-[(2x2-2x.2+4)+14]
=-[(2x-2)2+14]
=-(2x-2)2-14
Vì -(2x-2)2 bé hơn hoặc bằng 0 với mọi x nên -(2x-2)2-14 bé hơn hoặc bằng -14
Dấu "=" xảy ra khi x=1
Vậy GTLN là -14 tại x=1
Mấy bài khác tương tự nha bạn. Áp dụng hằng đẳng thức và trình bày như thế
bài 2 xem lại cách ra đề nha bạn
1.Tìm GTLN:
a)-2x^2+4x-18
Ấn vào máy tính : mode 5 1
Rồi án hệ phương trình vào lặp 3 lần dấu =
kq = 1
b)-2x^2-12x+12
Ấn tương tự phần a
kq = -3
c)-2x^2+2xy-5y^2+4y+2x+1
Câu này bạn chuyển về hằng đẳng thức rồi xét nghiệm tìm GTLN nha
2.Tìm x,y:
a)x^2-2x+4y^2+4y+2
= x2 - 2x . 1+ 12 + ( 2y )2 + 2 . 2y . 1 + 12
= ( x - 1 ) 2 + ( 2y + 1 ) 2
+) ( x - 1 ) 2 = 0 +) ( 2y + 1 ) 2 = 0
x - 1 = 0 2y + 1 = 0
x = 1 y = \(-\frac{1}{2}\)
b)4x^2-8x+y+2y
Câu này cũng tương tự như câu trên chuyển về hằng đẳng thức nha
sai đề
sai đè bạn ơi
lần sau nhớ chú ý nhé
ra câu khác đi