K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2021

Đặt A = -x2 - y2 + xy + 2x + 2y

=> 4A = -4x2 - 4y2 + 4xy + 8x + 8y

         = -(4x2 - 4xy + y2) + 4(2x - y) - 4 - 3y2 + 12y - 12 + 16 

         = -(2x - y)2 + 4(2x - y) - 4 - 3(y2 - 4y + 4) + 16

         = -(2x - y - 2)2 - 3(y - 2)2 + 4 \(\le16\)

=> A \(\le4\)

=> Max A = 4

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-y-2=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}\)

Vậy Max A = 4 <=> x = y = 2

3 tháng 11 2017

có dư dấu nào không bạn?

4 tháng 11 2017

B = - x2 -y2 + 2x + 2y

B = -( x2 - 2x + 1) - ( y2 - 2y + 1) + 2

B = -( x - 1)2 - ( y - 1)2 + 2

Do : -( x - 1)2 nhỏ hơn hoặc bằng 0 với mọi x

Suy ra : -( x - 1)2 + 2 nhỏ hơn hoặc bằng 2 với mọi x

Do : - ( y - 1)2 nhỏ hơn hoặc bằng 0 với mọi x

Suy ra : - ( y - 1)2 + 2 nhỏ hơn hoặc bằng 2 với mọi x

Vậy , Bmax = 2 khi và chỉ khi : x - 1 = 0 -> x = 1

y - 1 = 0 -> y = 1


4 tháng 9 2020

Ta có : A = x(x + 1)(x2 +  x - 4)

= (x2 + x)(x2 + x - 4)

Đặt x2 + x = t

Khi đó A = t(t - 4)

= t2 - 4t = t2 - 4t + 4 - 4 = (t - 2)2 - 4 \(\ge\)-4

 Dấu "=" xảy ra <=> t - 2 = 0

=> t = 2

=> x2 + x = 2

=> x2 + x - 2 = 0

=> x2 + 2x - x - 2 = 0

=> x(x + 2) - (x + 2) = 0

=> (x - 1)(x + 2) = 0

=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy Min A = -4 <=> x \(\in\left\{1;-2\right\}\)

4 tháng 9 2020

A = x( x + 1 )( x2 + x - 4 )

= ( x2 + x )( x2 + x - 4 )

Đặt t = x2 + x

A <=> t( t - 4 )

      = t2 - 4t

      = ( t2 - 4t + 4 ) - 4

      = ( t - 2 )2 - 4 

      = ( x2 + x - 2 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra <=> x2 + x - 2 = 0

                             <=> x2 - x + 2x - 2 = 0

                             <=> x( x - 1 ) + 2( x - 1 ) = 0

                             <=> ( x - 1 )( x + 2 ) = 0

                             <=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

=> MinA = -4 <=> x = 1 hoặc x = -2

AH
Akai Haruma
Giáo viên
15 tháng 8 2023

Tính giá trị của $x+y-2=0$ là sao nhỉ? $x+y-2=0$ sẵn rồi mà bạn?

15 tháng 8 2023

à bn ơi đề bị sai ạ x+y-2 th ạ

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(\Leftrightarrow M=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\left(\frac{1}{2}x^2-2x+2\right)+\left(\frac{1}{2}y^2-2y+2\right)-2\)

\(\Leftrightarrow M=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-2\right)^2+\frac{1}{2}\left(y-2\right)^2-2\ge-2\)\(\forall\)\(x\)

"=" khi x=y=2

Vậy Min M là -2 khi x=y=2

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(4M=4x^2+4y^2-4xy-8x-8y+8\)

\(4M=\left(4x^2-4xy+y^2\right)+3y^2-8x-8y+8\)

\(4M=\left[\left(2x-y\right)^2-2\left(2x-y\right)\times2+4\right]+3y^2-12y+4\)

\(4M=\left(2x-y-2\right)^2+3\left(y^2-4y+4\right)-8\)

\(4M=\left(2x-y-2\right)^2+3\left(y-2\right)^2-8\)

\(\Rightarrow4M\ge-8\)

\(\Leftrightarrow M\ge-2\)

Dấu "=" xảy ra khi :

3 tháng 3 2020

Max:

\(M=\frac{x^2+xy+y^2}{x^2+y^2}=1+\frac{xy}{x^2+y^2}\le1+\frac{xy}{2\left|xy\right|}\le1+\frac{xy}{2xy}=1+\frac{1}{2}=\frac{3}{2}\)

Dấu "=" xảy ra tại x=y