Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
- Ta có : \(-2\left(x-1\right)^2\le0\Rightarrow A=15-2\left(x-1\right)^2\le15\)
Vậy Max A = 15 <=> x = 1
- \(-\left(x^2-4\right)^2\le0\Rightarrow B=-2015-\left(x^2-4\right)^2\le-2015\)
Vậy Max B = -2015 <=> x = \(\pm2\)
\(A=15-2\left(x-1\right)^2\)
Vì \(-2\left(x-1\right)^2\le0\)
\(\Rightarrow15-2\left(x-1\right)^2\le15\)
Khi \(x-1=0\)
\(x=1\)
Vậy \(GTLN\) của A là 15 khi x = 1
\(B=-2015-\left(x^2-4\right)^2\)
Vì : \(-\left(x^2-4\right)^2\le0\)
\(\Rightarrow-2015-\left(x^2-4\right)^2\le-2015\)
Vậy GTLN của B là -2015 khi x = 2 ; x = -2
\(A=15-2\left(x-1\right)^2\)
Vì \(-2\left(x-1\right)^2\le0\)
=> \(15-2\left(x-1\right)^2\le15\)
Vậy GTLN của A là 15 khi x=1
\(B=-2015-\left(x^2-4\right)^2\)
Vì: \(-\left(x^2-4\right)^2\le0\)
=>\(-2015-\left(x^2-4\right)^2\le-2015\)
Vậy GTLN của B là -2015 khi x=2;x=-2
\(C=-\left(x^2+5\right)^2-\frac{1}{2}\)
Vì \(-\left(x^2+5\right)^2\le0\)
=> \(-\left(x^2+5\right)^2-\frac{1}{2}\le-\frac{1}{2}\)
Vậy GTLN của C là \(-\frac{1}{2}\)
Bài 2
\(a,\left(x-3\right)^2=9\Leftrightarrow\left(x-3\right)^2=3^2\Leftrightarrow x-3=3\Leftrightarrow x=6\)
\(b,\left(\frac{1}{2}+x\right)^2=16\Leftrightarrow\left(\frac{1}{2}+x\right)^2=4^2\Leftrightarrow\frac{1}{2}+x=4\Leftrightarrow x=\frac{7}{2}\)
\(A=\frac{x^2+y^2+3}{x^2+y^2+2}=1+\frac{1}{x^2+y^2+2}\)
Ta có:\(x^2\ge0;y^2\ge0\Rightarrow x^2+y^2\ge0\Rightarrow x^2+y^2+2\ge2\)
Khi đó:\(\frac{1}{x^2+y^2+2}\le\frac{1}{2}\)
\(\Rightarrow A\le\frac{3}{2}\)
Dấu "=" xảy ra tại x=y=0
Vậy \(A_{max}=\frac{3}{2}\) tại x=y=0
a ) \(M=2+x-x^2\)
\(=-x^2+x-\frac{1}{4}+\frac{9}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)đạt GTNN là \(\frac{9}{4}\) tại x = \(\frac{1}{2}\)
b ) \(S=-x^2+2xy-4y^2+2x+10y-3\)
\(=\left[\left(-x^2+2xy-y^2\right)+\left(2x-2y\right)-1\right]+\left(-3y^2+12y-12\right)+10\)
\(=\left[-\left(x-y\right)^2+2\left(x-y\right)-1\right]-3\left(y-2\right)^2+10\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10\le10\) có GTLN là 10
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Vậy \(S_{max}=10\Leftrightarrow x=3;y=2\)
sfdskjgkldfhgukksldn
dgdfjjsmgl;giossdj
dksdpogdfigjfigjdd
sdfksdkflsdkfsdf
sdfsdfjsfsdfs;d
psdkfjostyds
ko tìm được giá trị lớn nhất