K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2019

\(x-3x^2-5=-3\left(x^2-\frac{x}{3}+\frac{5}{3}\right)\)

\(=-3\left(x^2-\frac{x}{3}+\frac{1}{36}+\frac{59}{36}\right)\)

\(=-3\left[\left(x-\frac{1}{6}\right)^2+\frac{59}{36}\right]\)

\(=-3\left[\left(x-\frac{1}{6}\right)^2\right]-\frac{59}{12}\ge\frac{-59}{12}\)

19 tháng 10 2019

ミ★长 - ƔξŦ★彡 lộn dấu khúc cuối kìa bạn!

31 tháng 7 2016

M = -x2 +3x + 3x + 9 - 8

M = -x .( -x -3 ) - 3 .( -x -3 ) - 8

M =( -x -3 ) . ( -x -3 ) - 8

M = ( -x -3 ) 2 -8 

Vì ( -x -3 )>= 0  suy ra  ( -x -3 ) 2 -8  >= -8

=> - ( -x -3)  + 8 <= 8 

dấu " = xẩy ra <=> -x -3 =0 <=> x = -3 

31 tháng 7 2016

khi đó GTLN M = 8 khi x = -3 

18 tháng 8 2020

Em đng cần gấp ạ

18 tháng 8 2020

B = 2x2 + 5x + 7

     = 2( x2 + 5/2x + 25/16 ) + 31/8

     = 2( x + 5/4 )2 + 31/8

\(2\left(x+\frac{5}{4}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\)

Đẳng thức xảy ra <=> x + 5/4 => x = -5/4

=> MinB = 31/8 <=> x = -5/4

C = 6x - x2 - 12 = -( x2 - 6x + 9 ) - 3 = -( x - 3 )2 - 3

\(-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2-3\le-3\)

Đẳng thức xảy ra <=> x - 3 = 0 => x = 3

=> MaxC = -3 <=> x = 3

D = -3x2 - x + 5 = -3( x2 + 1/3x + 1/36 ) + 61/12 = -3( x + 1/6 )2 + 61/12

\(-3\left(x+\frac{1}{6}\right)^2\le0\forall x\Rightarrow-3\left(x+\frac{1}{6}\right)^2+\frac{61}{12}\le\frac{61}{12}\)

Đẳng thức xảy ra <=> x + 1/6 = 0 => x = -1/6

=> MaxD = 61/12 <=> x = -1/6

8 tháng 8 2016

\(C=x^2+y^2-3x+4y+5\)

\(=x^2-2\times x\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+y^2+2\times y\times2+2^2-2^2+5\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+2\right)^2-\frac{5}{4}\)

\(\left(x-\frac{3}{2}\right)^2\ge0\)

\(\left(y+2\right)^2\ge0\)

\(\left(x-\frac{3}{2}\right)^2+\left(y+2\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

Vậy Min C = \(-\frac{5}{4}\) khi x = \(\frac{3}{2}\) và y = \(-2\)

20 tháng 7 2020

A = (x2 - 3x + 1)(24 + 3x - x2)

A = -(x2 - 3x + 1)(x2 - 3x -24)

A = -[(x2 - 3x + 1)2 - 25(x2 - 3x + 1)]

A = -[(x2 - 3x + 1)2 - 25(x2 - 3x + 1) + 156,25 - 156,25]

A = -(x2 - 3x + 1 - 12,5)2 + 156,25 

A = -(x2 - 3x - 11,5)2 + 156,25 \(\le\)156,25 \(\forall\)x

Dấu "=" xảy ra <=> x2 - 3x - 11,5 = 0

<=> (x2 - 3x + 2,25) = 3,75

<=> (x - 1,5)2 = 3,75

<=> \(\orbr{\begin{cases}x=\frac{3+\sqrt{15}}{2}\\x=\frac{3-\sqrt{15}}{2}\end{cases}}\)

Vậy MaxA = 156,25 khi \(\orbr{\begin{cases}x=\frac{3+\sqrt{15}}{2}\\x=\frac{3-\sqrt{15}}{2}\end{cases}}\)

20 tháng 7 2020

thanks

1 tháng 1 2016

1/ 0, 71

2/ Tương tự 2 câu 1, 3 nhé!

3/ 11,25

Tick đúng nha! Thanks!

12 tháng 6 2018

\(A=x^2-6x+3\)

\(=\left(x^2-6x+9\right)-6\)

\(=\left(x+3\right)^2-6\)

ma \(\left(x+3\right)^2\ge0\Leftrightarrow\left(x+3\right)^2-6\ge-6\)

vậy gtnn của A là -6 tại x=-3

\(B=x^2+3x+7=\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{17}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)

vay .............................................

2/

\(A=-x^2+4x+8=-\left(x^2-4x+4\right)+12=-\left(x-2\right)^2+12\le12\)

vay .........................................

\(B=-x^2+3x-5=-\left(x^2-2\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}=\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\)

vay.....................................

nếu có sai mong bạn thông cảm

12 tháng 6 2018

ko sao cảm ơn

3 tháng 1 2018

a)\(\left(4x+5\right)^2-2\left(4x+5\right)\left(x+5\right)+\left(x+5\right)^2\)

\(=\left(4x+5-x-5\right)^2=\left(3x\right)^2=9x^2\)

b) \(3x-x^2-4\)

\(=-x^2+2.x.1,5-2,25+2,25-4\)

\(=-\left(x-1,5\right)^2-1,75\le-1,75\)

Dấu bằng xảy ra khi : \(x-1,5=0\)

                                \(x=1,5\) 

Vậy GTLN của biểu thức trên bằng -1,75 khi x = 1,5