K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2017

\(B=\frac{x^2+y^2+3}{x^2+y^2+2}=1+\frac{1}{x^2+y^2+2}\)

Để \(1+\frac{1}{x^2+y^2+2}\) đạt GTLN <=> \(\frac{1}{x^2+y^2+2}\) đạt GTLN

=> \(x^2+y^2+2\) đạt GTNN

Vì \(x^2+y^2\ge0\) với mọi x thuộc R

=> \(x^2+y^2+2\ge2\)

Dấu "=" xảy ra <=> x = y = 0

Vậy GTNN của B là \(\frac{3}{2}\) tại x = y = 0

14 tháng 2 2017

=\(\frac{X^{2+}Y^2+3}{X^2+Y^2+2}\) =\(\frac{X^2+Y^2+2}{X^2+Y^2+2}+\frac{1}{X^2+Y^2+2}\) 

=\(1+\frac{1}{X^2+Y^2+2}\) 

BLOWNS NHẤT KHI<=>\(\frac{1}{^{X^2+Y^2+2}}\) LỚN NHẤT

=>X^2+Y^2+2 =2=>X=Y=0

=>B LỚN NHẤT KHI X=Y=0

15 tháng 12 2017

Xét \(B=\frac{x^2+y^2+3}{x^2+y^2+2}\)

Mà \(x^2+y^2\ge0\)

Ta có \(\left(x^2+y^2+3\right)-\left(x^2+y^2+2\right)=1\)

Suy ra biểu thức B luôn có tử lớn hơn mẫu 1 đơn vị tức B>1

Để B đạt GTLN thì x và y phải càng nhỏ

Mà \(x^2+y^2\)đạt giá trị nhỏ nhất khi \(x^2+y^2=0\)

Thay vào 

Ta có GTLN của B là 0,5

15 tháng 12 2017

Xin lỗi 1,5 nha ghi nhầm. Mong bn thông cảm

5 tháng 3 2016

B lớn nhất<=>x2+y2+2 nhỏ nhất

xét mẫu thức:x2 >= 0 với mọi x

y2 >= 0 với mọi y

=>x2+y2 >= 0 với mọi x,y

=>x2+y2+2 >= 2 với mọi x,y

=>GTNN của x2+y2+2=2

=>BMax=3/2

dấu "=" xảy ra<=>x=y=0

5 tháng 3 2016

\(B=\frac{x^2+y^2+3}{x^2+y^2+3}=0\)

ta có: x^2>/0; y^2>/0

dấu "=" xảy ra khi x=0 và y=0

khi đó B=0

vậy GTNN của B=0 tại x=y=0

28 tháng 3 2018

Ta có : 

\(A=\frac{x^2+y^2+5}{x^2+y^2+3}=\frac{x^2+y^2+3+2}{x^2+y^2+3}=\frac{x^2+y^2+3}{x^2+y^2+3}+\frac{2}{x^2+y^2+3}=1+\frac{2}{x^2+y^2+3}\)

Để A đạt GTLN thì \(\frac{2}{x^2+y^2+3}\) phải đạt GTLN hay \(x^2+y^2+3>0\) và đạt GTNN 

Do đó : 

\(x^2+y^2+3=1\)

\(\Rightarrow\)\(x^2+y^2=-2\) ( loại vì \(x^2+y^2\ge0\) ) 

\(x^2+y^2+3=2\)

\(\Rightarrow\)\(x^2+y^2=-1\) ( loại ) 

\(x^2+y^2+3=3\)

\(\Rightarrow\)\(x^2+y^2=0\)

\(\Rightarrow\)\(\hept{\begin{cases}x^2=0\\y^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)

Suy ra : 

\(A=\frac{x^2+y^2+5}{x^2+y^2+3}=\frac{0^2+0^2+5}{0^2+0^2+3}=\frac{0+0+5}{0+0+3}=\frac{5}{3}\)

Vậy \(A_{max}=\frac{5}{3}\) khi \(x=y=0\)

Chúc bạn học tốt ~ 

25 tháng 3 2020

\(A=\frac{x^2+y^2+3}{x^2+y^2+2}=1+\frac{1}{x^2+y^2+2}\)

Ta có:\(x^2\ge0;y^2\ge0\Rightarrow x^2+y^2\ge0\Rightarrow x^2+y^2+2\ge2\)

Khi đó:\(\frac{1}{x^2+y^2+2}\le\frac{1}{2}\)

\(\Rightarrow A\le\frac{3}{2}\)

Dấu "=" xảy ra tại x=y=0

Vậy \(A_{max}=\frac{3}{2}\) tại x=y=0

26 tháng 3 2020

CẢM ƠN

a) \(\left(x-2\right)^2+2019\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+2019\ge2019\forall x\)

Dấu '=' xảy ra khi

\(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-2\right)^2+2019\) là 2019 khi x=2

b) \(\left(x-3\right)^2+\left(y-2\right)^2-2018\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\left(y-2\right)^2\ge0\forall y\)

Do đó: \(\left(x-3\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-3\right)^2+\left(y-2\right)^2-2018\ge-2018\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-3\right)^2+\left(y-2\right)^2-2018\) là -2018 khi x=3 và y=2

c) \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\)

Ta có: \(\left(3-x\right)^{100}\ge0\forall x\)

\(\Rightarrow-\left(3-x\right)^{100}\le0\forall x\)

Ta có: \(\left(y+2\right)^{200}\ge0\forall y\)

\(\Rightarrow-3\cdot\left(y+2\right)^{200}\le0\forall y\)

Do đó: \(-\left(3-x\right)^{100}-3\left(y+2\right)^{200}\le0\forall x,y\)

\(\Rightarrow-\left(3-x\right)^{100}-3\left(y+2\right)^{200}+2020\le2020\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(3-x\right)^{100}=0\\\left(y+2\right)^{200}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3-x=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\) là 2020 khi x=3 và y=-2

d) \(-\left|x-1\right|-2\left(2y-1\right)^2+100\)

Ta có: \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow-\left|x-1\right|\le0\forall x\)

Ta có: \(\left(2y-1\right)^2\ge0\forall y\)

\(\Rightarrow-2\left(2y-1\right)^2\le0\forall y\)

Do đó: \(-\left|x-1\right|-2\left(2y-1\right)^2\le0\forall x,y\)

\(\Rightarrow-\left|x-1\right|-2\left(2y-1\right)^2+100\le100\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left|x-1\right|=0\\\left(2y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(-\left|x-1\right|-2\left(2y-1\right)^2+100\) là 100 khi x=1 và \(y=\frac{1}{2}\)