\(\ge\)60 và x + y =100

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

16 minh chac minh lam 300 dim lun

26 tháng 2 2018

áp dụng BDT cô si ta có

\(xy\le\frac{\left(x+y\right)^2}{4}=\frac{100^2}{4}\)

vậy Max của \(xy=\frac{100^2}{4}=2500\)

dấu = xảy ra khi x=y=50 

Toán hóc búa nè cho mấy ckế thoải mái mà làm, ai làm đúng thì tui tick cho thật nhiều:Bài 1,cho a,b,c là các số dương . Tìm GTNN của :a,\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b};\)b,\(B=\frac{a}{b+c}+\frac{b+c}{a}+\frac{b}{a+c}+\frac{a+c}{b}+\frac{c}{a+b}+\frac{a+b}{c}\)Bài 2: a,cho các số dương x,y,z có tổng bằng 1. Tìm GTNN của:                            \(A=\frac{x+y}{xyz}\)         b, cho các số dương x,y,z,t có...
Đọc tiếp

Toán hóc búa nè cho mấy ckế thoải mái mà làm, ai làm đúng thì tui tick cho thật nhiều:

Bài 1,cho a,b,c là các số dương . Tìm GTNN của :

a,\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b};\)

b,\(B=\frac{a}{b+c}+\frac{b+c}{a}+\frac{b}{a+c}+\frac{a+c}{b}+\frac{c}{a+b}+\frac{a+b}{c}\)

Bài 2: a,cho các số dương x,y,z có tổng bằng 1. Tìm GTNN của:

                            \(A=\frac{x+y}{xyz}\)

         b, cho các số dương x,y,z,t có tổng bằng 2. Tìm GTNN của 

                           \(B=\frac{\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

Bài 3 : Tìm GTNN của \(A=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)biết rằng \(x,y,z\) là các số dương và \(x^2+y^2+z^2\le3\)

Bài 4:  a, Tìm GTLN của tích xy với x,y là các số dương, \(y\ge6\)và \(x+y=100\)

          b, Tìm GTLN của tích xyz với x,y,z là các số dương,\(z\ge6\)và \(x+y+z=100\)

2
18 tháng 7 2016

Bài 1:a,

A=a/b+c + b/a+c + c/a+b = a^2/ab+ac + b^2/ab+bc + c^2/ac+bc 

Áp dụng BĐT dạng Angel : A > hoặc = (a+b+c)^2/ab+ac+ab+bc+ac+bc=(a+b+c)^2/2(ab+bc+ca) > hoặc = 3(ab+bc+ca)/2(ab+bc+ca)=3/2 

b,làm tt câu a 

18 tháng 7 2016

câu 1 của bạn chính sác đấy

25 tháng 5 2019

Áp dụng BĐT : ( a + b + c )2 \(\ge\)3 ( ab + bc + ac )

Ta có : \(\frac{\left(x+y+1\right)^2}{xy+y+x}\ge\frac{3\left(xy+y+x\right)}{xy+y+x}=3\)

đặt \(\frac{\left(x+y+1\right)^2}{xy+y+x}=A\)

ta có : \(A+\frac{1}{A}=\frac{8A}{9}+\frac{A}{9}+\frac{1}{A}\ge\frac{8.3}{9}+2\sqrt{\frac{A}{9}.\frac{1}{A}}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)

25 tháng 5 2019

Ta có \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

=> \(a^2+b^2+c^2\ge ab+bc+ac\)=> \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

Áp dụng ta được

\(\left(x+y+1\right)^2\ge3\left(x+y+xy\right)\)=> \(\frac{\left(x+y+1\right)^2}{xy+y+x}\ge3\)

Đặt \(\frac{\left(x+y+1\right)^2}{x+y+xy}=t\)(\(t\ge3\))

Khi đó

\(VT=t+\frac{1}{t}=\left(\frac{t}{9}+\frac{1}{t}\right)+\frac{8}{9}t\ge\frac{2}{3}+\frac{8}{9}.3=\frac{10}{3}\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}t=3\\x=y=1\end{cases}}\)=> x=y=1

Lưu ý 

Nhiều người sẽ nhầm \(VT\ge2\)

Khi đó dấu bằng \(\left(x+y+1\right)^2=xy+x+y\)không xảy ra 

12 tháng 3 2018

1)
đặt : y = 60 + a => x = 40 - a
Ta có
√ [ 2/ 3( 60 + a )( 40 -a ) ] = √ ( 40 + 2a/ 3)( 40 - a )

√ ( 40 + 2a/ 3)( 40 - a ) =< ( 40 + 2a / 3 + 40 -a ) /2 ( BĐT cô si cho 2 so duong)

<=> √ ( 40 + 2a/ 3)( 40 - a ) =< ( 80 - a/ 3 )/2 =< 80 / 2 = 40

dấu = xảy ra <=> 40 + 2a / 3 = 40 -a và a / 3 = 0
<=> a = 0
<=> x = 40 ; y = 60

b)đặt : z = 60 + a
=> x = 40 -a - y
y = 40 -a - x
tương tự , áp dụng cô si cho 3 số

1/3( 60 + a ) ; ( 40 -a -y ) và ( 40 - a - x )

bài 2

Ta có : góc B = 60 độ
=> C = 30 độ
=> AB = BC / 2 ( đây là kiến thức 8 )

=> AC = √ ( BC^2 - BC^2 / 4 ) = ( BC√ 3 ) /2

=> AC / AB = ( BC√ 3 ) /2 : BC / 2 = √ 3

21 tháng 8 2019

Ta có: \(8\le xy+x+y\le\frac{\left(x+y\right)^2}{4}+x+y\)

Từ đó suy ra \(a+b\ge4\Rightarrow16\le\left(a+b\right)^2\le2\left(a^2+b^2\right)=2P\Rightarrow P\ge8\)

Vậy..

P/s: chắc là vậy đó!

30 tháng 9 2019

thh new ơi sai r bạn :))

13 tháng 6 2021

Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}\)(bđt cosi)

=> \(\frac{\left(x+y\right)^2}{4}\ge4\) <=> \(\left(x+y\right)^2\ge16\) <=> \(x+y\ge4\)

CM bđt tương đương: \(\frac{1}{x+3}+\frac{1}{y+3}\le\frac{2}{5}\) 

<=> \(\frac{5\left(x+3\right)+5\left(y+3\right)}{\left(y+3\right)\left(y+3\right)}\le2\)

<=> \(2\left(xy+3x+3y+9\right)\ge5x+5y+30\)

<=> \(2.4+6\left(x+y\right)+18-5\left(x+y\right)-30\ge0\)

<=> \(x+y-4\ge0\) (vì x + y \(\ge\)4)

<=> \(4-4\ge0\) (Luôn đúng) 

=> ĐPCM