Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left[\frac{\left(2\sqrt{x}-2\right)-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right]\left(ĐK:x\ge0;x\ne9\right)\)
\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3}{\sqrt{x}+3}\)
\(A=\sqrt{3x-5}+\sqrt{7-3x}\)
\(A^2=3x-5+7-3x+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)
\(=2+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)
\(\le2+\left(3x-5\right)+\left(7-3x\right)\)(Bđt Cô-si)
\(=2+2=4\)
\(\Rightarrow A^2\le4\Rightarrow A\le2\)
Dấu = khi \(\sqrt{3x-5}=\sqrt{7-3x}\Leftrightarrow x=2\)
Vậy....
ĐK: \(x\ge0;x\ne9\)
\(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}+\frac{3x+9}{x-9}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}-3\right)+3x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-3\sqrt{x}+2x-6\sqrt{x}+3x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{-9x+9}{x-9}\)
a) \(A=\frac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3}{\sqrt{x}+3}\)
b) \(A=\frac{1}{3}=>\frac{3}{\sqrt{x}+3}=\frac{1}{3}\)
\(=>\sqrt{x}+3=9\)
\(=>\sqrt{x}=6=>x=36\)
c) \(A\)\(lớn\)\(nhất\)\(< =>\frac{3}{\sqrt{x}+3}lớn\)\(nhất\)
\(=>\sqrt{x}+3\)\(nhỏ\)\(nhất\)
\(Mà\)\(\sqrt{x}+3>=3
\)
\(Do\)\(đó\)\(\sqrt{x}+3=3=>x=0\)
\(A\le\sqrt{2\left(3x-5+7-3x\right)}=\sqrt{2.2}=2\)
\(A_{max}=2\) khi \(x=2\)
\(B\le\sqrt{2\left(x-5+23-x\right)}=\sqrt{2.18}=6\)
\(B_{max}=6\) khi \(x=14\)
\(C=-\left(2-x\right)+\sqrt{2-x}+2=-\left(\sqrt{2-x}-\frac{1}{4}\right)^2+\frac{17}{8}\le\frac{17}{8}\)
\(C_{max}=\frac{17}{8}\) khi \(x=\frac{31}{16}\)
\(D\le\frac{1}{2}\left(x^2+1-x^2\right)=\frac{1}{2}\)
\(D_{max}=\frac{1}{2}\) khi \(x=\frac{\sqrt{2}}{2}\)
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=2x-1+2x-3\)
\(=4x-4\)
Làm nốt
Sửa đề :
Tìm max \(\sqrt{3x-9}+\sqrt{7-x}\)
Áp dụng BĐT Cô-si:
\(\sqrt{3x-9}=\frac{3\cdot\sqrt{3x-9}}{3}=\frac{\sqrt{9\cdot\left(3x-9\right)}}{3}\le\frac{\frac{9+3x-9}{2}}{3}=\frac{x}{2}\)
\(\sqrt{7-x}=\sqrt{1\cdot\left(7-x\right)}\le\frac{1+7-x}{2}=\frac{8-x}{2}\)
Cộng theo vế :
\(\sqrt{3x-9}+\sqrt{7-x}\le\frac{x+8-x}{2}=4\)
Dấu "=" xảy ra \(\Leftrightarrow x=6\)