Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a) }\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\\ =\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)\left(x-y\right)}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{x\sqrt{x}+y\sqrt{y}-x\sqrt{x}+x\sqrt{y}+y\sqrt{x}-y\sqrt{y}}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\\ =\sqrt{xy}\)
\(\text{b) }\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(\text{c) }\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\\ =\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^4}}\\ =\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}\\ =\dfrac{\sqrt{y}-1}{x-1}\)
a)\(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
\(=\dfrac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{x}\sqrt{y}+y\right)\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x+2\sqrt{xy}+y\)
\(=x+\sqrt{xy}+y-x+2\sqrt{xy}+y\)
\(=3\sqrt{xy}+2y\)
a) \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(\dfrac{x-1}{x+\sqrt{x}+1}\right)=\left[\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right].\dfrac{x+\sqrt{x}+1}{x-1}=\dfrac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{x+\sqrt{x}+1}{x-1}=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(x-1\right)}=\dfrac{1}{x-1}\)
b) Khi x=5+2\(\sqrt{3}\Leftrightarrow P=\dfrac{1}{5+2\sqrt{3}-1}=\dfrac{1}{4+2\sqrt{3}}=\dfrac{4-2\sqrt{3}}{\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)}=\dfrac{4-2\sqrt{3}}{16-12}=\dfrac{4-2\sqrt{3}}{4}=\dfrac{2\left(2-\sqrt{3}\right)}{4}=\dfrac{2-\sqrt{3}}{2}\)
c) Ta có \(\left|A\right|\le1\Leftrightarrow\left|\dfrac{1}{x-1}\right|\le1\Leftrightarrow\dfrac{1}{\left|x-1\right|}\le1\Leftrightarrow\left|x-1\right|\ge1\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-1\ge1\\1-x\le1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\)
Kết hợp với ĐK
Vậy x\(\le0\) hoặc \(x\ge2\) thì \(\left|A\right|\le1\)
a) \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(\dfrac{x-1}{x+\sqrt{x}+1}\right)=\left[\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right].\dfrac{x+\sqrt{x}+1}{x-1}=\dfrac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{x+\sqrt{x}+1}{x-1}=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(x-1\right)}=\dfrac{1}{x-1}\)
b) Khi x=5+2\(\sqrt{3}\Leftrightarrow P=\dfrac{1}{5+2\sqrt{3}-1}=\dfrac{1}{4+2\sqrt{3}}=\dfrac{4-2\sqrt{3}}{\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)}=\dfrac{4-2\sqrt{3}}{16-12}=\dfrac{4-2\sqrt{3}}{4}=\dfrac{2\left(2-\sqrt{3}\right)}{4}=\dfrac{2-\sqrt{3}}{2}\)
c) Ta có \(\left|A\right|\le1\Leftrightarrow\left|\dfrac{1}{x-1}\right|\le1\Leftrightarrow\dfrac{1}{\left|x-1\right|}\le1\Leftrightarrow\left|x-1\right|\ge1\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-1\ge1\\1-x\le1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\)
Kết hợp với ĐK
Vậy x\(\le0\) hoặc \(x\ge2\) thì \(\left|A\right|\le1\)
a,\(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(P=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right].\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{2}{x+\sqrt{x}+1}\)
Vậy \(P=\dfrac{2}{x+\sqrt{x}+1}\)
b, Ta có \(x+\sqrt{x}+1=\left(x+2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)Suy ra \(\dfrac{2}{x+\sqrt{x}+1}>0\forall x>0,x\ne1\)
hay \(P>0\forall x>0,x\ne1\)(đpcm)
Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3
a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Nếu có thêm điều kiện \(y>1\) thì kết quả là \(\dfrac{1}{x-1}\)