![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có
x2 + 2y2 + 2xy + 7x + 7y + 10 = 0
<=> (x + y)2 + 2(x + y) + 1 + 5(x + y + 1) + y2 + 4 = 0
<=> (x + y + 1)2 + 5(x + y + 1) + y2 + 4 = 0
<=> A2 + 5A + y2 + 4 = 0
<=> y2 = - 4 - 5A - A2 \(\ge0\)
<=> \(-4\le A\le-1\)
Vậy GTLN là -1, GTBN là - 4
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
\(D=\frac{2\left|x\right|+3}{3\left|x\right|-1}\)
\(\hept{\begin{cases}\left|x\right|\ge0\Rightarrow2\left|x\right|+3\ge3\\\left|x\right|\ge0\Rightarrow3\left|x\right|\ge0\Rightarrow3\left|x\right|-1\ge-1\end{cases}}\)
MaxD = Min3|x| -1
\(3\left|x\right|-1\in Z^+\)
\(\Rightarrow3x-1=1\)
\(\Rightarrow3x=2\Rightarrow x=\frac{2}{3}\)
\(\Rightarrow Max_D=\frac{2\left|\frac{2}{3}\right|+3}{3.\left|\frac{2}{3}\right|-1}=\frac{13}{\frac{3}{1}}=\frac{13}{3}\)
2:
Theo đề bài là:
\(\frac{x}{y}=\frac{7}{3};x-y=16\)
\(\frac{\Rightarrow x}{3}=\frac{y}{7};x-y=16\)
Áp dụng tính chất dãy tỉ số = ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
\(\frac{x}{3}=-4\)
\(\Rightarrow\hept{\begin{cases}x=-4.3\\x=-12\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=-4.7\\y=-28\end{cases}}\)
Vậy x = -12
y = -28
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn xem lại bài 1 đi:Đề phải là tìm GTLN chứ
2a:
Ta có:\(a^2+b^2+c^2=ab+ac+bc\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+ac+bc\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Vì \(\left(a-b\right)^2;\left(a-c\right)^2;\left(b-c\right)^2\ge0\) nên \(\left(a-b\right)^2=\left(a-c\right)^2=\left(b-c\right)^2=0\Leftrightarrow a=b=c\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ 0, 71
2/ Tương tự 2 câu 1, 3 nhé!
3/ 11,25
Tick đúng nha! Thanks!
\(-x^2-7x+1\)
\(-\left(x^2+7x-1\right)\)
\(=-\left(x^2+2.x.\frac{7}{2}+\frac{49}{4}-\frac{49}{4}+1\right)\)
\(=-\left(\left(x+\frac{7}{2}\right)^2-\frac{45}{4}\right)\)
\(=\frac{45}{4}-\left(x+\frac{7}{2}\right)^2\le\frac{45}{4}\)