\(P=6+8x-8x^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

A = 6 + 8x + 8x2

A = 8x2 + 8x + 6

A = 2( 4x2 + 4x + 3 )

A = 2( 4x2 + 4x + 1 ) + 2

A = 2( 2x + 1 )2 + 2 2xR≥2∀x∈R

Dấu " = " xảy ra <=> 2( 2x + 1 )2 = 0

=> ( 2x + 1 )2 = 0

=> 2x + 1 = 0

=> x = -1/2

Vậy GTLN của A là 2 khi x = -1/2

13 tháng 12 2019

P =6+8x8x2

= -2(4x2 -2.x.4+ 16)+38

=-2(2x-4)2+38

Vi -2(2x-4)2 ≤0 ∀x

⇒ -2(2x-4)+38 ≤38 ∀x

* 6+8x-8x2 có GTLN = 38

⇔ -2(2x-4)2=0

⇔2x-4=0

⇔x=2

20 tháng 10 2018

Tìm GTNN.

Gọi biểu thức trên là A. Ta có; \(A=2x+3\Rightarrow A^2=\left(2x+3\right)^2=4x^2+12x+9\)

Đặt \(B=4x^2+12x+9\).Ta có:

\(B=4x^2+12x+9\)

\(=4\left(x^2+3x+\frac{9}{4}\right)=4\left(x+\frac{3}{2}\right)^2\ge0\) (do \(4\left(x+\frac{3}{2}\right)\ge0\forall x\))

Mà \(A^2=B\Rightarrow A=\sqrt{B}\ge\sqrt{0}=0\)

Vậy \(A_{min}=0\Leftrightarrow4\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x=-\frac{3}{2}\)

Tìm GTLN:tương tự

24 tháng 5 2020

hello bn tui

24 tháng 5 2020

\(A=-2x^2+8x+13\)

\(A=-2\left(x^2-4x+4\right)+21\)

\(A=-2\left(x-2\right)^2+21\)

\(A=21-2\left(x-2^2\right)\le21\)

\(MAX\left(A\right)=21\Leftrightarrow x=2\)

 #hoktot<3# 

1, P=5-8x-x^2

      = -(x^2+2*4*x+4^2) +21

      =-(x+4)^2+21

Vì (x+4)^2> hoặc= 0 nên -(x+4)< hoặc =0=>P< hoặc bằng 21

=>GTLN của P là 21

2,P=4x-x^2+1

     =-(x^2-2*2*x+2^2)+5

     =-(x-2)^2+5

Tương tự như câu 1, ta có GTLN của P là 5

30 tháng 12 2016

Mình mới học lớp 6

Nên không biết nha

Chúc các bạn học giỏi

30 tháng 12 2016

P+1=(8x+12)/(x^2+4)+1

P+1=(8x+12)/(x^2+4)+(x^2+4)/(x^2+4)

P+1=(x^2+8x+16)/(x^2+4)

P+1=(x+4)^2/(x^2+4) luôn lớn hơn hoặc bằng 0 do (x+4)^2 luôn lớn hơn hoặc bằng 0 và x^2+4 luôn lớn hơn 0 

suy ra P+1 luôn lớn hơn hoặc bằng 0

vậy P luôn lớn hơn hoặc bằng -1 dấu bằng xảy ra khi x=-4

11 tháng 2 2017

\(A=\frac{8x^2+6xy}{x^2+y^2}\)

Ta có

\(9-A=9-\frac{8x^2+6xy}{x^2+y^2}=\frac{x^2-6xy+9y^2}{x^2+y^2}=\frac{\left(x-3y\right)^2}{x^2+y^2}\ge0\)

\(\Rightarrow A\le9\) đẳng thức khi x=3y

18 tháng 6 2019

Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html

21 tháng 9 2017

\(A=\left(-x^2-8x-16\right)+21\)

\(=-\left(x^2+8x+16\right)+21\)

\(=-\left(x+4\right)^2+21\)

Mà \(-\left(x+4\right)^2\le0\)\(\forall x\)

\(\Rightarrow A\le21\)\(\forall x\)

Dấu = xảy ra khi\(x=-4\)

Vậy MAX \(A=21\Leftrightarrow x=-4\)

25 tháng 12 2017

ta có B=\(\frac{x^2-8x+1}{x^2+1}=\frac{-\left(x^2+1\right)+2\left(x^2-4x+4\right)}{x^2+1}=-1+\frac{2\left(x-2\right)^2}{x^2+1}\ge-1\)

=>b>= -1

dấu = xảy ra <=> x=2

Ta có =\(\frac{x^2-8x+7}{x^2+1}=\frac{9\left(x^2+1\right)-2\left(4x^2+4x+1\right)}{x^2+1}=9-\frac{2\left(2x+1\right)^2}{x^2+1}\le9\) 

=> B<=9, dấu = xảy ra <=> x=-1/2

15 tháng 12 2018

\(D=-\left(x^2+8x+4^2\right)+21\)

\(D=-\left(x+4\right)^2+21\le21\)

Dấu = xảy ra khi x+4=0

=> x=-4. Vậy max D=21 khi x=-4

\(E=-\left(x^2-4x+2^2\right)+5=-\left(x-2\right)^2+5\le5\)

Dấu = xảy ra khi x-2=0

=> x=2. Vậy max E=5 khi x=2

15 tháng 12 2018

\(D=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+4^2-21\right)=\)\(-\left(x+4\right)^2+21\)\(\le21\)

Dấu \("="\)xảy ra \(\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

Vậy GTLN của D là 21 khi x = - 4 

\(E=4x-x^2+1=-\left(x^2-4x-1\right)\)\(=-\left(x^2-4x+2^2-5\right)=-\left(x-2\right)^2+5\)\(\le5\)

Dấu \("="\)xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy GTLN của E là 5 khi x = 2