Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTNN.
Gọi biểu thức trên là A. Ta có; \(A=2x+3\Rightarrow A^2=\left(2x+3\right)^2=4x^2+12x+9\)
Đặt \(B=4x^2+12x+9\).Ta có:
\(B=4x^2+12x+9\)
\(=4\left(x^2+3x+\frac{9}{4}\right)=4\left(x+\frac{3}{2}\right)^2\ge0\) (do \(4\left(x+\frac{3}{2}\right)\ge0\forall x\))
Mà \(A^2=B\Rightarrow A=\sqrt{B}\ge\sqrt{0}=0\)
Vậy \(A_{min}=0\Leftrightarrow4\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x=-\frac{3}{2}\)
Tìm GTLN:tương tự
\(A=-2x^2+8x+13\)
\(A=-2\left(x^2-4x+4\right)+21\)
\(A=-2\left(x-2\right)^2+21\)
\(A=21-2\left(x-2^2\right)\le21\)
\(MAX\left(A\right)=21\Leftrightarrow x=2\)
#hoktot<3#
1, P=5-8x-x^2
= -(x^2+2*4*x+4^2) +21
=-(x+4)^2+21
Vì (x+4)^2> hoặc= 0 nên -(x+4)< hoặc =0=>P< hoặc bằng 21
=>GTLN của P là 21
2,P=4x-x^2+1
=-(x^2-2*2*x+2^2)+5
=-(x-2)^2+5
Tương tự như câu 1, ta có GTLN của P là 5
P+1=(8x+12)/(x^2+4)+1
P+1=(8x+12)/(x^2+4)+(x^2+4)/(x^2+4)
P+1=(x^2+8x+16)/(x^2+4)
P+1=(x+4)^2/(x^2+4) luôn lớn hơn hoặc bằng 0 do (x+4)^2 luôn lớn hơn hoặc bằng 0 và x^2+4 luôn lớn hơn 0
suy ra P+1 luôn lớn hơn hoặc bằng 0
vậy P luôn lớn hơn hoặc bằng -1 dấu bằng xảy ra khi x=-4
\(A=\frac{8x^2+6xy}{x^2+y^2}\)
Ta có
\(9-A=9-\frac{8x^2+6xy}{x^2+y^2}=\frac{x^2-6xy+9y^2}{x^2+y^2}=\frac{\left(x-3y\right)^2}{x^2+y^2}\ge0\)
\(\Rightarrow A\le9\) đẳng thức khi x=3y
\(A=\left(-x^2-8x-16\right)+21\)
\(=-\left(x^2+8x+16\right)+21\)
\(=-\left(x+4\right)^2+21\)
Mà \(-\left(x+4\right)^2\le0\)\(\forall x\)
\(\Rightarrow A\le21\)\(\forall x\)
Dấu = xảy ra khi\(x=-4\)
Vậy MAX \(A=21\Leftrightarrow x=-4\)
ta có B=\(\frac{x^2-8x+1}{x^2+1}=\frac{-\left(x^2+1\right)+2\left(x^2-4x+4\right)}{x^2+1}=-1+\frac{2\left(x-2\right)^2}{x^2+1}\ge-1\)
=>b>= -1
dấu = xảy ra <=> x=2
Ta có =\(\frac{x^2-8x+7}{x^2+1}=\frac{9\left(x^2+1\right)-2\left(4x^2+4x+1\right)}{x^2+1}=9-\frac{2\left(2x+1\right)^2}{x^2+1}\le9\)
=> B<=9, dấu = xảy ra <=> x=-1/2
\(D=-\left(x^2+8x+4^2\right)+21\)
\(D=-\left(x+4\right)^2+21\le21\)
Dấu = xảy ra khi x+4=0
=> x=-4. Vậy max D=21 khi x=-4
\(E=-\left(x^2-4x+2^2\right)+5=-\left(x-2\right)^2+5\le5\)
Dấu = xảy ra khi x-2=0
=> x=2. Vậy max E=5 khi x=2
\(D=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+4^2-21\right)=\)\(-\left(x+4\right)^2+21\)\(\le21\)
Dấu \("="\)xảy ra \(\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
Vậy GTLN của D là 21 khi x = - 4
\(E=4x-x^2+1=-\left(x^2-4x-1\right)\)\(=-\left(x^2-4x+2^2-5\right)=-\left(x-2\right)^2+5\)\(\le5\)
Dấu \("="\)xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy GTLN của E là 5 khi x = 2
A = 6 + 8x + 8x2
A = 8x2 + 8x + 6
A = 2( 4x2 + 4x + 3 )
A = 2( 4x2 + 4x + 1 ) + 2
A = 2( 2x + 1 )2 + 2 ≥2∀x∈R≥2∀x∈R
Dấu " = " xảy ra <=> 2( 2x + 1 )2 = 0
=> ( 2x + 1 )2 = 0
=> 2x + 1 = 0
=> x = -1/2
Vậy GTLN của A là 2 khi x = -1/2
P =6+8x−8x2
= -2(4x2 -2.x.4+ 16)+38
=-2(2x-4)2+38
Vi -2(2x-4)2 ≤0 ∀x
⇒ -2(2x-4)+38 ≤38 ∀x
* 6+8x-8x2 có GTLN = 38
⇔ -2(2x-4)2=0
⇔2x-4=0
⇔x=2