![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
a: \(C=a^2+b^2=\left(a+b\right)^2-2ab=23^2-2\cdot132=265\)
b: \(D=x^3+y^3+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)
\(=1-3xy+3xy=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A=-x2-4x-4-y2+2y-1+5
A=-(x+2)2-(y-1)2+5
A=-((x+2)2+(y-1)2)+5
MaxA=5
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2 :
a) \(P=x^2+y^2+xy+x+y\)
\(2P=2x^2+2y^2+2xy+2x+2y\)
\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)
\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)
Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc
@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
x^2 -4x+5+y^2+2y
=(x^2-4x+4)+(y^2+2y +1)
=(x-2)^2+(y+1)^2
vì (x-2 )^2 >= 0
(y+1)^2>=0
=)) (x-2)^2 +(y+1)^2 >=0
dấu "=" xảy ra
<=>x-2 =0 =)x=2
và y+1=0 =)y=-1
vậy..........
![](https://rs.olm.vn/images/avt/0.png?1311)
a,
\(x^2+4x+6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2\)
\(=>A=\dfrac{x^2+4x+6}{3}\ge\dfrac{2}{3}\)
Vậy giá trị nhỏ nhất của biểu thức là 2/3 , dấu ''='' xảy ra khi và chỉ khi x = -2 .
b, \(Ta,c\text{ó}:\left|1-2x\right|\ge0\)
\(=>4+\left|1-2x\right|\ge4\)
\(=>\dfrac{4+\left|1+2x\right|}{5}\ge\dfrac{4}{5}\)
Vậy giá trị nhỏ nhất của biểu thức là 4/5 , dấu bằng xảy ra khi và chỉ khi 1 - 2x = 0 => x = 1/2
c,
\(\dfrac{5}{4x^2+4x+2y+y^2+3}\)
\(=\dfrac{5}{\left(2x+1\right)^2+\left(y+1\right)^2+1}\ge\dfrac{5}{1}=5\)
Vậy giá trị nhỏ nhất của biểu thức là 5 , dấu '='' xảy ra khi và chỉ khi
\(\left\{{}\begin{matrix}2x+1=0\\y+1=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-1\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M=4x^2+4xy+2y\left(y-2\right)=4x^2+4xy+2y^2-4y.\)
\(=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-4\)
\(=\left(2x+y\right)^2+\left(y-2\right)^2-4\ge-4\)
MinM=-4
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x-y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
M = -x2 - y2 + 4x - 2y + 5
<=> M = - x2 + 4x - 4 - y2 - 2y - 1 + 10
<=> M = -(x2 - 4x+ 4) - (y2 + 2y + 1) + 10
<=> M = -(x - 2)2 - (y + 1)2 + 10
Do: (x - 2)2 lớn hơn hoặc bằng 0 <=> -(x - 2)2 bé hơn hoặc bằng 0
(y + 1)2 lớn hơn hoặc bằng 0 <=> -(y + 1)2 bé hơn hoặc bằng 0
=> M bé hơn hoặc bằng 10
Dấu "=" xảy ra khi: -(x - 2)2 = 0 và -(y + 1)2 = 0
<=> x = 2 và y = -1
Vậy GTNN của M là 10 khi và chỉ khi x = 2 và y = -1
\(M=-\left(x^2-4x+16\right)-\left(y^2+2y+1\right)+20\)
\(=-\left(x-4\right)^2-\left(y+1\right)^2+20\le20\)
\(M_{max}=20\)dấu bằng sảy ra khi \(\hept{\begin{cases}x-4=0\\y+1=0\end{cases}}=\orbr{\begin{cases}x=4\\y=-1\end{cases}}\)